71 research outputs found

    Cloud cover estimation: Use of GOES imagery in development of cloud cover data base for insolation assessment

    Get PDF
    The potential of using digital satellite data to establish a cloud cover data base for the United States, one that would provide detailed information on the temporal and spatial variability of cloud development are studied. Key elements include: (1) interfacing GOES data from the University of Wisconsin Meteorological Data Facility with the Jet Propulsion Laboratory's VICAR image processing system and IBIS geographic information system; (2) creation of a registered multitemporal GOES data base; (3) development of a simple normalization model to compensate for sun angle; (4) creation of a variable size georeference grid that provides detailed cloud information in selected areas and summarized information in other areas; and (5) development of a cloud/shadow model which details the percentage of each grid cell that is cloud and shadow covered, and the percentage of cloud or shadow opacity. In addition, comparison of model calculations of insolation with measured values at selected test sites was accomplished, as well as development of preliminary requirements for a large scale data base of cloud cover statistics

    Cloud cover typing from environmental satellite imagery. Discriminating cloud structure with Fast Fourier Transforms (FFT)

    Get PDF
    The use of two dimensional Fast Fourier Transforms (FFTs) subjected to pattern recognition technology for the identification and classification of low altitude stratus cloud structure from Geostationary Operational Environmental Satellite (GOES) imagery was examined. The development of a scene independent pattern recognition methodology, unconstrained by conventional cloud morphological classifications was emphasized. A technique for extracting cloud shape, direction, and size attributes from GOES visual imagery was developed. These attributes were combined with two statistical attributes (cloud mean brightness, cloud standard deviation), and interrogated using unsupervised clustering amd maximum likelihood classification techniques. Results indicate that: (1) the key cloud discrimination attributes are mean brightness, direction, shape, and minimum size; (2) cloud structure can be differentiated at given pixel scales; (3) cloud type may be identifiable at coarser scales; (4) there are positive indications of scene independence which would permit development of a cloud signature bank; (5) edge enhancement of GOES imagery does not appreciably improve cloud classification over the use of raw data; and (6) the GOES imagery must be apodized before generation of FFTs

    HIAPER: The next generation NSF/NCAR research aircraft

    Get PDF

    Pregnant women\u27s knowledge of weight, weight gain, complications of obesity and weight management strategies in pregnancy

    Get PDF
    BACKGROUND: Obesity is increasingly common in the obstetric population. Maternal obesity and excess gestational weight gain (GWG) are associated with increased perinatal risk. There is limited published data demonstrating the level of pregnant women's knowledge regarding these problems, their consequences and management strategies.We aimed to assess the level of knowledge of pregnant women regarding: (i) their own weight and body mass index (BMI) category, (ii) awareness of guidelines for GWG, (iii) concordance of women's own expectations with guidelines, (iv) knowledge of complications associated with excess GWG, and (v) knowledge of safe weight management strategies in pregnancy. METHODS: 364 pregnant women from a single center university hospital antenatal clinic were interviewed by an obstetric registrar. The women in this convenience sample were asked to identify their weight category, their understanding of the complications of obesity and excessive GWG in pregnancy and safe and/or effective weight management strategies in pregnancy. RESULTS: Nearly half (47.8%) of the study population were overweight or obese. 74% of obese women underestimated their BMI category. 64% of obese women and 40% of overweight women overestimated their recommended GWG. Women's knowledge of the specific risks associated with excess GWG or maternal obesity was poor. Women also reported many incorrect beliefs about safe weight management in pregnancy. CONCLUSIONS: Many pregnant women have poor knowledge about obesity, GWG, their consequences and management strategies. Bridging this knowledge gap is an important step towards improving perinatal outcomes for all pregnant women, especially those who enter pregnancy overweight or obese

    Toward impact-based monitoring of drought and its cascading hazards

    Get PDF
    Growth in satellite observations and modelling capabilities has transformed drought monitoring, offering near-real-time information. However, current monitoring efforts focus on hazards rather than impacts, and are further disconnected from drought-related compound or cascading hazards such as heatwaves, wildfires, floods and debris flows. In this Perspective, we advocate for impact-based drought monitoring and integration with broader drought-related hazards. Impact-based monitoring will go beyond top-down hazard information, linking drought to physical or societal impacts such as crop yield, food availability, energy generation or unemployment. This approach, specifically forecasts of drought event impacts, would accordingly benefit multiple stakeholders involved in drought planning, and risk and response management, with clear benefits for food and water security. Yet adoption and implementation is hindered by the absence of consistent drought impact data, limited information on local factors affecting water availability (including water demand, transfer and withdrawal), and impact assessment models being disconnected from drought monitoring tools. Implementation of impact-based drought monitoring thus requires the use of newly available remote sensors, the availability of large volumes of standardized data across drought-related fields, and the adoption of artificial intelligence to extract and synthesize physical and societal drought impacts.</p

    The challenge of unprecedented floods and droughts in risk management

    Get PDF
    Risk management has reduced vulnerability to floods and droughts globally1,2, yet their impacts are still increasing3. An improved understanding of the causes of changing impacts is therefore needed, but has been hampered by a lack of empirical data4,5. On the basis of a global dataset of 45 pairs of events that occurred within the same area, we show that risk management generally reduces the impacts of floods and droughts but faces difficulties in reducing the impacts of unprecedented events of a magnitude not previously experienced. If the second event was much more hazardous than the first, its impact was almost always higher. This is because management was not designed to deal with such extreme events: for example, they exceeded the design levels of levees and reservoirs. In two success stories, the impact of the second, more hazardous, event was lower, as a result of improved risk management governance and high investment in integrated management. The observed difficulty of managing unprecedented events is alarming, given that more extreme hydrological events are projected owing to climate change3

    Panta Rhei benchmark dataset: socio-hydrological data of paired events of floods and droughts

    Get PDF
    As the adverse impacts of hydrological extremes increase in many regions of the world, a better understanding of the drivers of changes in risk and impacts is essential for effective flood and drought risk management and climate adaptation. However, there is currently a lack of comprehensive, empirical data about the processes, interactions, and feedbacks in complex human–water systems leading to flood and drought impacts. Here we present a benchmark dataset containing socio-hydrological data of paired events, i.e. two floods or two droughts that occurred in the same area. The 45 paired events occurred in 42 different study areas and cover a wide range of socio-economic and hydro-climatic conditions. The dataset is unique in covering both floods and droughts, in the number of cases assessed and in the quantity of socio-hydrological data. The benchmark dataset comprises (1) detailed review-style reports about the events and key processes between the two events of a pair; (2) the key data table containing variables that assess the indicators which characterize management shortcomings, hazard, exposure, vulnerability, and impacts of all events; and (3) a table of the indicators of change that indicate the differences between the first and second event of a pair. The advantages of the dataset are that it enables comparative analyses across all the paired events based on the indicators of change and allows for detailed context- and location-specific assessments based on the extensive data and reports of the individual study areas. The dataset can be used by the scientific community for exploratory data analyses, e.g. focused on causal links between risk management; changes in hazard, exposure and vulnerability; and flood or drought impacts. The data can also be used for the development, calibration, and validation of sociohydrological models. The dataset is available to the public through the GFZ Data Services (Kreibich et al., 2023, https://doi.org/10.5880/GFZ.4.4.2023.001)

    Panta Rhei benchmark dataset: socio-hydrological data of paired events of floods and droughts

    Get PDF
    As the adverse impacts of hydrological extremes increase in many regions of the world, a better understanding of the drivers of changes in risk and impacts is essential for effective flood and drought risk management and climate adaptation. However, there is currently a lack of comprehensive, empirical data about the processes, interactions and feedbacks in complex human-water systems leading to flood and drought impacts. Here we present a benchmark dataset containing socio-hydrological data of paired events, i.e., two floods or two droughts that occurred in the same area. The 45 paired events occurred in 42 different study areas and cover a wide range of socio-economic and hydro-climatic conditions. The dataset is unique in covering both floods and droughts, in the number of cases assessed, and in the quantity of socio-hydrological data. The benchmark dataset comprises: 1) detailed review style reports about the events and key processes between the two events of a pair; 2) the key data table containing variables that assess the indicators which characterise management shortcomings, hazard, exposure, vulnerability and impacts of all events; 3) a table of the indicators-of-change that indicate the differences between the first and second event of a pair. The advantages of the dataset are that it enables comparative analyses across all the paired events based on the indicators-of-change and allows for detailed context- and location-specific assessments based on the extensive data and reports of the individual study areas. The dataset can be used by the scientific community for exploratory data analyses e.g. focused on causal links between risk management, changes in hazard, exposure and vulnerability and flood or drought impacts. The data can also be used for the development, calibration and validation of socio-hydrological models. The dataset is available to the public through the GFZ Data Services (Kreibich et al. 2023, link for review: https://dataservices.gfz-potsdam.de/panmetaworks/review/923c14519deb04f83815ce108b48dd2581d57b90ce069bec9c948361028b8c85/).</p
    • …
    corecore