126 research outputs found

    How important is the name in predicting false recognition for lookalike brands?

    Get PDF
    An underexploited role for psychology in trademark law is the testing of explicit or implicit judicial assumptions about consumer behavior. In this article we examine an assumption that is common across Commonwealth countries, namely, that similar packaging is unlikely to cause consumer confusion provided the brand names are dissimilar. We began by selecting branded products commonly found in supermarkets. For each existing brand we created 2 novel (fictitious) brands with highly similar packaging to the existing brand. One of these "lookalike" products had a similar name, the other a dissimilar name. Across 2 yes/no and 1 forced-choice experiments using photographs of the real and fictitious products we looked at false recognition rates. Contrary to the judicial assumption participants largely ignored the brand names when making their decisions based on memory. It was only when the pictures of the products were placed side-by-side (in the forced-choice task) that they paid the brand name any significant attention

    Brandname confusion: Subjective and objective measures of orthographic similarity

    Get PDF
    Determining brand name similarity is vital in areas of trademark registration and brand confusion. Students rated the orthographic (spelling) similarity of word pairs (Experiments 1, 2, and 4) and brand name pairs (Experiment 5). Similarity ratings were consistently higher when words shared beginnings rather than endings, whereas shared pronunciation of the stressed vowel had small and less consistent effects on ratings. In Experiment 3 a behavioral task confirmed the similarity of shared beginnings in lexical processing. Specifically, in a task requiring participants to decide whether 2 words presented in the clear (a probe and a later target) were the same or different, a masked prime word preceding the target shortened response latencies if it shared its initial 3 letters with the target. The ratings of students for word and brand name pairs were strongly predicted by metrics of orthographic similarity from the visual word identification literature based on the number of shared letters and their relative positions. The results indicate a potential use for orthographic metrics in brand name registration and trademark law

    How important is the name in predicting false recognition for lookalike brands?

    Get PDF
    An underexploited role for psychology in trademark law is the testing of explicit or implicit judicial assumptions about consumer behavior. In this article we examine an assumption that is common across Commonwealth countries, namely, that similar packaging is unlikely to cause consumer confusion provided the brand names are dissimilar. We began by selecting branded products commonly found in supermarkets. For each existing brand we created 2 novel (fictitious) brands with highly similar packaging to the existing brand. One of these "lookalike" products had a similar name, the other a dissimilar name. Across 2 yes/no and 1 forced-choice experiments using photographs of the real and fictitious products we looked at false recognition rates. Contrary to the judicial assumption participants largely ignored the brand names when making their decisions based on memory. It was only when the pictures of the products were placed side-by-side (in the forced-choice task) that they paid the brand name any significant attention

    CRT: A numerical tool for propagating ultra-high energy cosmic rays through Galactic magnetic field models

    Full text link
    Deflection of ultra high energy cosmic rays (UHECRs) by the Galactic magnetic field (GMF) may be sufficiently strong to hinder identification of the UHECR source distribution. A common method for determining the effect of GMF models on source identification efforts is backtracking cosmic rays. We present the public numerical tool CRT for propagating charged particles through Galactic magnetic field models by numerically integrating the relativistic equation of motion. It is capable of both forward- and back-tracking particles with varying compositions through pre-defined and custom user-created magnetic fields. These particles are injected from various types of sources specified and distributed according to the user. Here, we present a description of some source and magnetic field model implementations, as well as validation of the integration routines.Comment: 12 pages, 9 figure

    Magnetically aligned dust and SiO maser polarisation in the envelope of the red supergiant VY Canis Majoris

    Get PDF
    International audienceWe use Atacama Large Millimeter/submillimeter Array Band 5 science verification observations of the red supergiant VY CMa to study the polarization of SiO thermal/masers lines and dust continuum at ~1.7 mm wavelength. We analyse both linear and circular polarization and derive the magnetic field strength and structure, assuming the polarization of the lines originates from the Zeeman effect, and that of the dust originates from aligned dust grains. We also discuss other effects that could give rise to the observed polarization. We detect, for the first time, significant polarization (~3%) of the circumstellar dust emission at millimeter wavelengths. The polarization is uniform with an electric vector position angle of 8\sim8^\circ. Varying levels of linear polarization are detected for the J=4-3 28SiO v=0, 1, 2, and 29SiO v=0, 1 lines, with the strongest polarization fraction of ~30% found for the 29SiO v=1 maser. The linear polarization vectors rotate with velocity, consistent with earlier observations. We also find significant (up to ~1%) circular polarization in several lines, consistent with previous measurements. We conclude that the detection is robust against calibration and regular instrumental errors, although we cannot yet fully rule out non-standard instrumental effects. Emission from magnetically aligned grains is the most likely origin of the observed continuum polarization. This implies that the dust is embedded in a magnetic field >13 mG. The maser line polarization traces the magnetic field structure. The magnetic field in the gas and dust is consistent with an approximately toroidal field configuration, but only higher angular resolution observations will be able to reveal more detailed field structure. If the circular polarization is due to Zeeman splitting, it indicates a magnetic field strength of ~1-3 Gauss, consistent with previous maser observations

    A comparative analysis of recombinant Fab and full‐length antibody production in Chinese hamster ovary cells

    Get PDF
    Monoclonal antibodies are the leading class of biopharmaceuticals in terms of numbers approved for therapeutic purposes. Antigen‐binding fragments (Fab) are also used as biotherapeutics and used widely in research applications. The dominant expression systems for full‐length antibodies are mammalian cell‐based, whereas for Fab molecules the preference has been an expression in bacterial systems. However, advances in CHO and downstream technologies make mammalian systems an equally viable option for small‐ and large‐scale Fab production. Using a panel of full‐length IgG antibodies and their corresponding Fab pair with different antigen specificities, we investigated the impact of the IgG and Fab molecule format on production from Chinese hamster ovary (CHO) cells and assessed the cellular capability to process and produce these formats. The full‐length antibody format resulted in the recovery of fewer mini‐pools posttransfection when compared to the corresponding Fab fragment format that could be interpreted as indicative of a greater overall burden on cells. Antibody‐producing cell pools that did recover were subsequently able to achieve higher volumetric protein yields (mg/L) and specific productivity than the corresponding Fab pools. Importantly, when the actual molecules produced per cell of a given format was considered (as opposed to mass), CHO cells produced a greater number of Fab molecules per cell than obtained with the corresponding IgG, suggesting that cells were more efficient at making the smaller Fab molecule. Analysis of cell pools showed that gene copy number was not correlated to the subsequent protein production. The amount of mRNA correlated with secreted Fab production but not IgG, whereby posttranscriptional processes act to limit antibody production. In summary, we provide the first comparative description of how full‐length IgG and Fab antibody formats impact on the outcomes of a cell line construction process and identify potential limitations in their production that could be targeted for engineering increases in the efficiency in the manufacture of these recombinant antibody formats

    FGF receptor genes and breast cancer susceptibility: results from the Breast Cancer Association Consortium

    Get PDF
    Background:Breast cancer is one of the most common malignancies in women. Genome-wide association studies have identified FGFR2 as a breast cancer susceptibility gene. Common variation in other fibroblast growth factor (FGF) receptors might also modify risk. We tested this hypothesis by studying genotyped single-nucleotide polymorphisms (SNPs) and imputed SNPs in FGFR1, FGFR3, FGFR4 and FGFRL1 in the Breast Cancer Association Consortium. Methods:Data were combined from 49 studies, including 53 835 cases and 50 156 controls, of which 89 050 (46 450 cases and 42 600 controls) were of European ancestry, 12 893 (6269 cases and 6624 controls) of Asian and 2048 (1116 cases and 932 controls) of African ancestry. Associations with risk of breast cancer, overall and by disease sub-type, were assessed using unconditional logistic regression. Results:Little evidence of association with breast cancer risk was observed for SNPs in the FGF receptor genes. The strongest evidence in European women was for rs743682 in FGFR3; the estimated per-allele odds ratio was 1.05 (95 confidence interval=1.02-1.09, P=0.0020), which is substantially lower than that observed for SNPs in FGFR2. Conclusion:Our results suggest that common variants in the other FGF receptors are not associated with risk of breast cancer to the degree observed for FGFR2. © 2014 Cancer Research UK

    DNA repair modulates the vulnerability of the developing brain to alkylating agents

    Get PDF
    Neurons of the developing brain are especially vulnerable to environmental agents that damage DNA (i.e., genotoxicants), but the mechanism is poorly understood. The focus of the present study is to demonstrate that DNA damage plays a key role in disrupting neurodevelopment. To examine this hypothesis, we compared the cytotoxic and DNA damaging properties of the methylating agents methylazoxymethanol (MAM) and dimethyl sulfate (DMS) and the mono- and bifunctional alkylating agents chloroethylamine (CEA) and nitrogen mustard (HN2), in granule cell neurons derived from the cerebellum of neonatal wild type mice and three transgenic DNA repair strains. Wild type cerebellar neurons were significantly more sensitive to the alkylating agents DMS and HN2 than neuronal cultures treated with MAM or the half-mustard CEA. Parallel studies with neuronal cultures from mice deficient in alkylguanine DNA glycosylase (Aag[superscript −/−]) or O6-methylguanine methyltransferase (Mgmt[superscript −/−]), revealed significant differences in the sensitivity of neurons to all four genotoxicants. Mgmt−/− neurons were more sensitive to MAM and HN2 than the other genotoxicants and wild type neurons treated with either alkylating agent. In contrast, Aag[superscript −/−] neurons were for the most part significantly less sensitive than wild type or Mgmt[superscript −/−] neurons to MAM and HN2. Aag[superscript −/−] neurons were also significantly less sensitive than wild type neurons treated with either DMS or CEA. Granule cell development and motor function were also more severely disturbed by MAM and HN2 in Mgmt[superscript −/−] mice than in comparably treated wild type mice. In contrast, cerebellar development and motor function were well preserved in MAM-treated Aag[superscript −/−] or MGMT-overexpressing (Mgmt[superscript Tg+]) mice, even as compared with wild type mice suggesting that AAG protein increases MAM toxicity, whereas MGMT protein decreases toxicity. Surprisingly, neuronal development and motor function were severely disturbed in Mgmt[superscript Tg+] mice treated with HN2. Collectively, these in vitro and in vivo studies demonstrate that the type of DNA lesion and the efficiency of DNA repair are two important factors that determine the vulnerability of the developing brain to long-term injury by a genotoxicant.United States. Army Medical Research and Materiel Command (Contract/Grant/Intergovernmental Project Order DAMD 17-98-1-8625)United States. National Institutes of Health (grants CA075576)United States. National Institutes of Health (RO1 C63193)United States. National Institutes of Health (P30 CA043703
    corecore