143 research outputs found

    Low off-state Leakage Currents in AlGaN/GaN High Electron Mobility Transistors By Employing A Highly Stressed SiNx Surface Passivation Layer

    Get PDF
    In this study, the impact of the stress in SiNx surface passivation layers on off-state drain and gate leakage currents and off-state breakdown voltage in AlGaN/GaN High Electron Mobility Transistors (HEMTs) is assessed. The SiNx films were deposited at room temperature by inductively coupled plasma chemical vapour deposition (ICP-CVD). Compared to unpassivated devices, the off-state drain and gate leakage currents of AlGaN/GaN HEMTs is increased by up to 2 orders of magnitude for a 200 nm thick SiNx passivation layer with 309 MPa compressive stress. The use of a bilayer SiNx passivation scheme comprising 70 nm SiNx with 309 MPa compressive stress followed by 130 nm SiNx with 880 MPa compressive stress resulted in off-state drain and gate leakage currents reduced by up to 1 order of magnitude when compared to unpassivated devices

    Molecular beam epitaxy of free-standing bulk wurtzite AlxGa1-xN layers using a highly efficient RF plasma source

    Get PDF
    Recent developments with group III nitrides suggest AlxGa1-xN based LEDs can be new alternative commer-cially viable deep ultra-violet light sources. Due to a sig-nificant difference in the lattice parameters of GaN and AlN, AlxGa1-xN substrates would be preferable to either GaN or AlN for ultraviolet device applications. We have studied the growth of free-standing wurtzite AlxGa1-xN bulk crystals by plasma-assisted molecular beam epitaxy (PA-MBE) using a novel RF plasma source. Thick wurtz-ite AlxGa1-xN films were grown by PA-MBE on 2-inch GaAs (111)B substrates and were removed from the GaAs substrate after growth to provide free standing AlxGa1-xN samples. Growth rates of AlxGa1-xN up to 3 μm/h have been demonstrated. Our novel high efficiency RF plasma source allowed us to achieve free-standing bulk AlxGa1-xN layers in a single day’s growth, which makes our MBE bulk growth technique commercially vi-able

    Molecular beam epitaxy of free-standing bulk wurtzite AlxGa1-xN layers using a highly efficient RF plasma source

    Get PDF
    Recent developments with group III nitrides suggest AlxGa1-xN based LEDs can be new alternative commer-cially viable deep ultra-violet light sources. Due to a sig-nificant difference in the lattice parameters of GaN and AlN, AlxGa1-xN substrates would be preferable to either GaN or AlN for ultraviolet device applications. We have studied the growth of free-standing wurtzite AlxGa1-xN bulk crystals by plasma-assisted molecular beam epitaxy (PA-MBE) using a novel RF plasma source. Thick wurtz-ite AlxGa1-xN films were grown by PA-MBE on 2-inch GaAs (111)B substrates and were removed from the GaAs substrate after growth to provide free standing AlxGa1-xN samples. Growth rates of AlxGa1-xN up to 3 μm/h have been demonstrated. Our novel high efficiency RF plasma source allowed us to achieve free-standing bulk AlxGa1-xN layers in a single day’s growth, which makes our MBE bulk growth technique commercially vi-able

    InGaN micro-LEDs integrated onto an ultra-thin, colloidal quantum dot functionalized glass platform

    Get PDF
    We demonstrate an integrated color-converting device by transfer printing blue-emitting micro-sized InGaN LEDs onto an ultra-thin glass platform functionally enhanced with colloidal quantum dots. Color conversion and waveguiding properties of the structure are presented

    Sulfuric acid and hydrogen peroxide surface passivation effects on AlGaN/GaN high electron mobility transistors

    Get PDF
    In this work, we have compared SiNx passivation, hydrogen peroxide, and sulfuric acid treatment on AlGaN/GaN HEMTs surface after full device fabrication on Si substrate. Both the chemical treatments resulted in the suppression of device pinch-off gate leakage current below 1 μA/mm, which is much lower than that for SiNx passivation. The greatest suppression over the range of devices is observed with the sulfuric acid treatment. The device on/off current ratio is improved (from 104–105 to 107) and a reduction in the device sub-threshold (S.S.) slope (from ∼215 to 90 mV/decade) is achieved. The sulfuric acid is believed to work by oxidizing the surface which has a strong passivating effect on the gate leakage current. The interface trap charge density (Dit ) is reduced (from 4.86 to 0.90 × 1012 cm−2 eV−1), calculated from the change in the device S.S. The gate surface leakage current mechanism is explained by combined Mott hopping conduction and Poole Frenkel models for both untreated and sulfuric acid treated devices. Combining the sulfuric acid treatment underneath the gate with the SiNx passivation after full device fabrication results in the reduction of Dit and improves the surface related current collapse

    Floc formation reduces the pH stress experienced by microorganisms living in alkaline environments

    Get PDF
    The survival of microorganisms within a cementitious geological disposal facility for radioactive wastes is heavily dependent on their ability to survive the calcium dominated, hyper-alkaline conditions resulting from the dissolution of the cementitious materials. The present study shows that the formation of flocs, composed of a complex mixture of extracellular polymeric substances (EPS), provides protection against alkaline pH values up to pH 13.0. The flocs were dominated by Alishewanella and Dietzia sp, producing a mannose rich carbohydrate fraction incorporating extracellular DNA, resulting in Ca2+ sequestration. EPS provided a ~10 µm thick layer around the cells within the centre of the flocs, which were capable of growth at pH 11.0 and 11.5, maintaining internal pH values of pH 10.4 and 10.7 respectively. Survival was observed at pH 12.0, where an internal floc pH of 11.6 was observed alongside a reduced associated biomass. Limited floc survival (<2 weeks) was observed at pH 13.0.This study demonstrates that flocs are able to maintain a lower internal pH in response to the hyperalkaline conditions expected to occur within a cementitious, geological disposal facility for radioactive wastes and indicates that floc communities within such a facility would be capable of survival up to a pH of 12.0

    Low off-state Leakage Currents in AlGaN/GaN High Electron Mobility Transistors By Employing A Highly Stressed SiNx Surface Passivation Layer

    Get PDF
    In this study, the impact of the stress in SiNx surface passivation layers on off-state drain and gate leakage currents and off-state breakdown voltage in AlGaN/GaN High Electron Mobility Transistors (HEMTs) is assessed. The SiNx films were deposited at room temperature by inductively coupled plasma chemical vapour deposition (ICP-CVD). Compared to unpassivated devices, the off-state drain and gate leakage currents of AlGaN/GaN HEMTs is increased by up to 2 orders of magnitude for a 200 nm thick SiNx passivation layer with 309 MPa compressive stress. The use of a bilayer SiNx passivation scheme comprising 70 nm SiNx with 309 MPa compressive stress followed by 130 nm SiNx with 880 MPa compressive stress resulted in off-state drain and gate leakage currents reduced by up to 1 order of magnitude when compared to unpassivated devices

    Transfer printed multi-color integrated devices for visible light communication applications

    Get PDF
    Integrated multi-color devices for visible light communication applications are fabricated by transfer printing blue-emitting GaN light emitting diodes (LEDs) onto a green-emitting LED array and a colloidal quantum dot color-converter structure

    Effects of surface plasma treatment on threshold voltage hysteresis and instability in metal-insulator-semiconductor (MIS) AlGaN/GaN heterostructure HEMTs

    Get PDF
    In a bid to understand the commonly observed hysteresis in the threshold voltage (VTH) in AlGaN/GaN metal-insulator-semiconductor high electron mobility transistors during forward gate bias stress, we have analyzed a series of measurements on devices with no surface treatment and with two different plasma treatments before the in-situ Al2O3 deposition. The observed changes between samples were quasi-equilibrium VTH, forward bias related VTH hysteresis, and electrical response to reverse bias stress. To explain these effects, a disorder induced gap state model, combined with a discrete level donor, at the dielectric/semiconductor interface was employed. Technology Computer-Aided Design modeling demonstrated the possible differences in the interface state distributions that could give a consistent explanation for the observations

    Growth of free-standing bulk wurtzite AlxGa1−xN layers by molecular beam epitaxy using a highly efficient RF plasma source

    Get PDF
    The recent development of group III nitrides allows researchers world-wide to consider AlGaN based light emitting diodes as a possible new alternative deep ultra–violet light source for surface decontamination and water purification. In this paper we will describe our recent results on plasma-assisted molecular beam epitaxy (PA-MBE) growth of free-standing wurtzite AlxGa1−xN bulk crystals using the latest model of Riber's highly efficient nitrogen RF plasma source. We have achieved AlGaN growth rates up to 3 µm/h. Wurtzite AlxGa1−xN layers with thicknesses up to 100 μm were successfully grown by PA-MBE on 2-inch and 3-inch GaAs (111)B substrates. After growth the GaAs was subsequently removed using a chemical etch to achieve free-standing AlxGa1−xN wafers. Free-standing bulk AlxGa1−xN wafers with thicknesses in the range 30–100 μm may be used as substrates for further growth of AlxGa1−xN-based structures and devices. High Resolution Scanning Transmission Electron Microscopy (HR-STEM) and Convergent Beam Electron Diffraction (CBED) were employed for detailed structural analysis of AlGaN/GaAs (111)B interface and allowed us to determine the N-polarity of AlGaN layers grown on GaAs (111)B substrates. The novel, high efficiency RF plasma source allowed us to achieve free-standing AlxGa1−xN layers in a single day's growth, making this a commercially viable process
    • …
    corecore