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Abstract 15 

The survival of microorganisms within a cementitious geological disposal facility for 16 

radioactive wastes is heavily dependent on their ability to survive the calcium 17 

dominated, hyper-alkaline conditions resulting from the dissolution of the cementitious 18 

materials. The present study shows that the formation of flocs, composed of a complex 19 

mixture of extracellular polymeric substances (EPS), provides protection against 20 

alkaline pH values up to pH 13.0. The flocs were dominated by Alishewanella and 21 

Dietzia sp, producing a mannose rich carbohydrate fraction incorporating extracellular 22 

DNA, resulting in Ca2+ sequestration. EPS provided a ~10 µm thick layer around the 23 

cells within the centre of the flocs, which were capable of growth at pH 11.0 and 11.5, 24 

maintaining internal pH values of pH 10.4 and 10.7 respectively. Survival was 25 

observed at pH 12.0, where an internal floc pH of 11.6 was observed alongside a 26 

reduced associated biomass. Limited floc survival (<2 weeks) was observed at pH 27 

13.0.This study demonstrates that flocs are able to maintain a lower internal pH in 28 

response to the hyperalkaline conditions expected to occur within a cementitious, 29 

geological disposal facility for radioactive wastes and indicates that floc communities 30 

within such a facility would be capable of survival up to a pH of 12.0.  31 

Importance 32 

The role of extracellular polymeric substances (EPS) in the survival of microorganisms 33 

within hyperalkaline conditions is poorly understood. Here we present data for the 34 

taxonomy, morphology and chemical characteristics of an EPS based microbial floc, 35 

formed by a consortia isolated from an anthropogenic hyperalkaline site. Short term 36 

(<2 weeks) survival of the flocs at pH 13 was observed with indefinite survival 37 

observed at pH 12.0. Micro pH electrodes (ø10 µm) were utilised to demonstrate that 38 
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flocs were able to maintain a lower internal pH in response to hyperalkaline conditions 39 

(pH 11.0, 11.5 and 12.0), demonstrating for the first time that floc formation and EPS 40 

production is a survival strategy under hyperalkaline conditions. The results indicate 41 

how microbial communities may survive and propagate within the hyperalkaline 42 

environment expected to prevail in a cementitious geological disposal facility for 43 

radioactive wastes, they are also relevant to the wider extremophile community.   44 

Introduction 45 

One of the concepts for the disposal of the UK’s intermediate level radioactive waste 46 

(ILW) inventory is a geological disposal facility (GDF) employing a cementitious backfill 47 

(1, 2). It is anticipated that post closure, groundwater ingress into such a facility will 48 

result in a saturated, anaerobic, calcium rich, hyper-alkaline environment that will aid 49 

radionuclide retention through sorption and the formation of insoluble complexes (3, 50 

4). These conditions will also result in the alkaline hydrolysis of the cellulose 51 

component of the ILW producing a range of small molecular weight organic 52 

compounds collectively known as cellulose degradation products (CDP) (5). The 53 

biodegradation of CDP has received considerable attention in recent years with a 54 

number of authors reporting alkaliphilic degradation under a wide range of growth 55 

conditions (6, 7) including alkaliphilic methanogenic consortia operating at pH 11.0 (8). 56 

In some cases these alkaliphilic communities have been shown to form flocs where 57 

the bacteria are encased in a matrix of extracellular polymeric substances (EPS) (9). 58 

The ability of freshwater and marine microorganisms to aggregate into a sustainable 59 

microenvironment is documented (10, 11), however the added selective pressure of 60 

alkaline pH is not commonly observed in the natural world. 61 
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EPS such as carbohydrates, proteins, lipids and extracellular DNA (eDNA) are 62 

ubiquitous components of biofilm matrices (12). In addition to EPS; inorganic materials 63 

(minerals) may also be incorporated to provide structural support where physical 64 

stresses may impact on survival (13). Biofilm formation is known to enhance survival 65 

against a range of environmental stresses such as pH shifts (14), with some biofilm 66 

communities creating more favourable growth conditions through the secretion of 67 

specific EPS components (15, 16). In these cases biofilm formation allows microbial 68 

propagation in extreme environments (16, 17).  69 

In the case of hyper-alkaline environments the primary environmental stress is the 70 

extreme pH and there are examples in the literature of flocs and biofilms attenuating 71 

the ambient pH.  Aggregates of Bacillus laevolacticus modulated their internal pH by 72 

between 0.4 – 2.0 pH units (18). A difference of 1 pH unit in methanogenic aggregates 73 

from an up flow anaerobic sludge blanket have also been observed (19). Large pH 74 

differences have been recorded in Pseudomonas  biofilms; where a difference of 1.4 75 

pH units was measured across distances of 50µm (20). Further pH shifts have been 76 

seen across a variety of distances in a range of biofilms grown under different 77 

conditions (21-23). However, in all these cases, the pH shifts are associated with near 78 

neutral conditions and as such, the logarithmic nature of the pH scale means that the 79 

modulation of internal pH in response to alkaline conditions represents a significantly 80 

more difficult challenge to the microorganisms concerned.  81 

Information regarding the ability of flocs to attenuate pH within alkaline environments 82 

is currently absent from the literature. Consequently, the aim of this study was to 83 

determine the ability of alkaliphilic flocs (9) to attenuate environmental pH values 84 

relevant to a cementitious GDF. The isolated flocs were also characterised in terms of 85 

microbial community structure, morphology and compositional aspects of the EPS 86 
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produced. The study sought to determine what degree floc formation is a survival 87 

strategy for alkaliphilic microorganisms; and if flocs provide a potential dispersion 88 

vehicle for alkaliphilic microorganisms within hyper-alkaline environments such as a 89 

cementitious GDF.  90 

Materials and Methods 91 

Community composition and flocculate concentration 92 

A previously described flocculate producing microcosm operating at pH 11.0 was sub-93 

sampled and maintained as described previously (9). Briefly, the microcosm was 94 

inoculated with material retrieved from an area inundated with alkaline leachate at the 95 

lime kiln waste site Harpur Hill, Derbyshire, UK. The microcosm was completely mixed, 96 

incubated at 25°C and fed alkaline cellulose degradation products every two weeks 97 

on a 10% waste/feed cycle.  Microcosm fluid (25 mL) was centrifuged at 5,000 x g for 98 

10 minutes with the resulting pellet re-suspended in 25mL of phosphate buffer as 99 

described by Hurt et al. (24) Genomic DNA was extracted for analysis using the 100 

methods of Griffiths et al (25). The V4 region of the 16S rRNA gene was amplified 101 

using primers 519F (5’CAGCMGCCGCGGTAA’3) and 785R 102 

(5’TACNVGGGTATCTAATCC’3) for both bacteria and archaea (26, 27) with the 103 

following overhangs 5’ TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG’3 and 5’ 104 

GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG’3, respectively. PCR reaction 105 

mixture contained 20 ng of purified DNA solution, 0.5µL of each primer (20 pmol µL-1 106 

concentration), and 25 µL of MyTaq HS red mix (BIOLINE, UK) made up to 50 µL 107 

volume with PCR grade water. The reaction mixture was then incubated at 94 °C for 108 

1 minute, and then cycled 35 times through three steps: denaturing (94 °C, 15 s), 109 

annealing (60 °C, 15 s), primer extension (72 °C, 10 s). This was followed by a final 110 
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extension step of 72 °C for 5 minutes. 16S rRNA gene microbial community analysis 111 

was carried out via a MiSeq platform (Illumina, USA) at 250 bp paired ends with 112 

chimera detection and removal performed via the UNCHIME algorithm in the Mothur 113 

suite (28) (Chunlab, South Korea). Assignment of OTU’s was performed using a CD-114 

HIT clustering method with a 95 % cut-off value with taxonomic assignment performed 115 

against the EZtaxon database  (29) .  116 

Floc concentration  was determined using a Guava easyCytetm flow cytometer 117 

(Millipore, US) with flocs stained using FITc (Fisher, UK) in accordance with methods 118 

outlined in Chen, et al. (30). Floc size distribution was analysed using a Mastersizer 119 

2000 (Malvern, UK) with a dispersant refractive index of 1.330 and a particle refractive 120 

index of 1.572, with flocs isolated by centrifugation and re-suspended in ultrapure 121 

water before analysis.  122 

Morphology 123 

The overall morphology of the flocs was investigated using a Quanta FEG 250 124 

scanning electron microscope (SEM) and energy-dispersive X-ray spectroscopy 125 

(EDX) used for analysis of sites of interest. Samples were fixed overnight in 4 % 126 

paraformaldehyde (Fisher, UK) then dehydrated using a serial ethanol dilution of 25, 127 

50, 75 and 100 % for 2 min per step. Samples were then dried onto a metal disc and 128 

sputter coated via a gold palladium plasma (CA7625 Polaron, Quorum Technologies 129 

Ltd, UK). The structural morphology of the flocculates was investigated via confocal 130 

laser scanning microscopy (CLSM) at the Bio imaging centre of Leeds University using 131 

a Zeiss LSM880 inverted confocal microscope with image analysis performed using 132 

Zen 2.1 (Zeiss Microscopy). Flocs were fixed in 4% Paraformaldehyde (Fisher, UK) 133 

overnight and then stained using the following compounds in accordance with 134 

methods outlined in Chen et al. (30): Calcofluor white for the visualisation of β-1,4 and 135 
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β-1,3 polysaccharides (Sigma, UK), Nile red (Fisher, UK) for lipids and hydrophobic 136 

sites, concanavalin A, tetramethylrhodamine conjugate (Fisher, UK) for α-137 

mannopyranosyl, α-glucopyranosyl sugars, FITc (Fisher, UK) for protein and Syto 63 138 

(Fisher , UK) for total cells and extracellular DNA. Fluorescence  in situ hybridisation 139 

was carried out as per the methods of Ainsworth et al (31), using previously described 140 

probes for the identification of total bacteria (32), Firmicutes (33), γ-Proteobacteria 141 

(34) and Actinobacteria (35).    142 

EPS extraction, Purification and Characterisation 143 

Crude EPS was extracted from the flocs using a multiple extraction method outlined 144 

by Ras et al. (36), which extracts different components of EPS based upon the 145 

disruption of different chemical bonds. ATP was measured at each step to ensure the 146 

EPS extraction was not causing the lysis of cells and thus contaminating the extracted 147 

EPS. This was performed using a 3M Clean-Trace Biomass Detection Kit and 148 

Luminometer (3M, UK) employing a modified method described previously by Charles 149 

et al. (9); with CFU mL-1 calculated using a standard curve of Escherichia coli K12 150 

concentrations (data not shown). The crude EPS extracts were then measured for 151 

carbohydrate content via the phenol sulphuric acid method (37), protein content via 152 

the Bradford assay (38) lipid content via the methods of Bligh and Dyer (39) and the 153 

DNA content via a Genova-nano spectrophotometer (Jenway, Bibby Scientific, UK).  154 

In order to purify the extracted EPS, dialysis was carried out against ultrapure water 155 

for 72 hours with the water changed every 24 hours. The protein and carbohydrate 156 

fractions were then isolated from the dialysed EPS. Protein was precipitated via 157 

treatment with trichloroacetic acid and the carbohydrate fraction precipitated via 158 

ethanol treatment as outlined in Marshall, et al. (40). Monomer composition was 159 

determined by TFA hydrolysis followed by anion exchange chromatography as 160 
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described previously (41) with the exception that sample was eluted with aqueous 0.01 161 

M NaOH for 20 minutes followed by 83 % 10 mM NaOH: 17 % 150 mM NaOH:1 M 162 

sodium acetate for 25 minutes for simultaneous determination of monomers and 163 

uronic acids. Dry weight and inorganic content of the flocs were determined by 164 

methods outlined in BS ISO 6496:1999 (42). 165 

EPS calcium binding assay  166 

Aqueous suspensions of EPS:Ca2+
 (as CaCl2) were prepared to concentrations of 0.1, 167 

0.25, 0.5 and 1 g. g-1 dry weight and incubated at room temperature for 15 minutes. 168 

The calcium content of the samples was then quantified using a Metrohm 850 169 

Professional IC (Metrohm, Cheshire, UK) with pulsed amperometric detection, 170 

employing a Metrohm C4 Column (250 mm x 4.6 mm) with a mobile phase of 4.6 mM 171 

phosphoric acid.   All reactions were carried out under nitrogen to avoid interference 172 

from atmospheric carbon dioxide and EPS bound calcium determined via comparison 173 

with EPS-free incubations. Total bound calcium was determined using atomic 174 

absorbance spectroscopy (Agilent 200 series AA, Agilent, UK) following digestion of 175 

EPS (1 mg) in 10 ml of 0.1 % KCl: 1 % HNO3.  176 

Floc profiling 177 

pH profiles of the flocs were undertaken with a micromanipulator and stand (Unisense, 178 

Denmark) using a 10 µm diameter pH electrode with an external reference (Unisense, 179 

Denmark) connected to a single channel pH/redox meter supplied by the probe 180 

manufacturer (Unisense, Denmark). The probe was calibrated against pH 4.0, pH 7.0 181 

and pH 10.0 standards (Fisher, UK) and tested against pH 11.0 and pH 12.0 solutions 182 

made using NAOH. Profiles were taken through the flocs at pH 11.0, 11.5 and 12.0. 183 

In order to generate the pH profile of the flocs, microcosm fluid was incubated for 1 184 

hour at the desired pH and then injected into agar cubes of the same pH to provide 185 
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support for the profiling.  Control profiles were conducted through agarose at pH 11.0, 186 

11.5 and 12.0. In order to investigate floc stability under a range of pH values zeta 187 

potential of the flocs was measured using a Zetasizer nano (Malvern, UK) with the 188 

zeta potential calculated using Smoluchowski’s equation. Flocs were isolated by 189 

centrifugation and re-suspended in ultrapure water of the desired pH (values between 190 

pH 7.0 and pH 12.0) before analysis. 191 

Floc survival 192 

In order to investigate the ability of the floc communities to survive prolonged exposure 193 

to hyperalkaline conditions small scale microcosms of approximately 104 cells per ml 194 

were formed using 100 ml Wheaton bottles at pH values 11.0, 11.5, 12.0 and 13.0 in 195 

duplicate. The microcosms were composed of mineral media (43) and CDP to match 196 

the composition of the original microcosm reported in Charles et al. (9). CDP was 197 

produced by methods outlined previously by Rout et al.(44)  and pH was measured on 198 

a weekly basis using a portable handheld probe and meter (Mettler Toledo, UK), with 199 

pH adjusted accordingly using sodium hydroxide or hydrochloric acid. The head space 200 

of the microcosms was kept under nitrogen to ensure anaerobic conditions. The 201 

microcosms were sampled for ATP concentration on a weekly basis for three weeks 202 

using a 3M Clean-Trace Biomass Detection Kit and Luminometer (3M, UK) as 203 

previously described. Abiotic controls were established for each pH value within the 204 

pH range and were sampled as per the above. 205 

Accession number 206 

16S rRNA  genesequence data was uploaded to the NCBI sequence read archive 207 

under the accession number SRP082489 208 
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Results 209 

Floc Characterisation 210 

Sequencing of the microbial 16S rRNA gene returned 18854 reads via Illumina MiSeq 211 

technology. The microcosm community was dominated by sequence reads associated 212 

with the Phyla Proteobacteria (39.49 %), Actinobacteria (32.93 %), Firmicutes (24.85 213 

%) and Bacteroidetes (2.34 %) making up 99.6 % of the library (Fig. 1). The 214 

Proteobacteria and Actinobacteria were each dominated by sequence reads 215 

associated with Alishewanella (31.81 %) and Dietzia (26.74 %) respectively. Reads 216 

associated with Hydrogenophaga and Silanimonas were also detected within the 217 

Proteobacteria group, where Leucobacter and Corynebacterium represented >1 % of 218 

the total reads within the Actinobacteria. The Firmicutes detected were not dominated 219 

by a particular species per se, where Anaerobranca (4.55 %), GQ356941_g (4.45 %), 220 

Tissierella (2.67 %), Natronobacillus (2.55 %), Bacillus (2.04 %) and Bacillus_g26 221 

(1.68 %) were all represented within the sequence reads. The Bacteroidetes were 222 

almost entirely composed of the sequence reads associated with the genus 223 

Aquiflexum (2.16 % of the total reads).  224 

Flow cytometry indicated that the floc concentration was 2.0 x 105 flocs/ml in the pH 225 

11.0 microcosm with 54.4 % of the flocs being >10 µm in diameter reaching a 226 

maximum size of 240 µm (Fig. S1). SEM investigations (Fig. S2) revealed individual 227 

flocs to be clusters of cells, polymeric substance and crystalline precipitates. These 228 

precipitates were composed elementally of calcium, carbon and oxygen indicating 229 

calcium carbonate precipitation (Fig. S2). Confocal laser scanning microscopy (CLSM) 230 

revealed the flocs to be composed of a complex mixture of proteins, carbohydrates, 231 

lipids, eDNA and cells (Fig. 2). The most basal layer of the floc was composed primarily 232 

of lipids and β-1,4 and β-1,3 polysaccharides, where the most outer layers of the floc 233 
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were composed of concentrated areas of proteins, these regions were surrounded by 234 

α-mannopyranosyl and α-glucopyranosyl sugars which were also closely associated 235 

with eDNA. These regions of pyranosyl sugars and eDNA surrounded the crystalline 236 

precipitates observed under SEM. Bacterial cells were in the centre of the floc, with 237 

~10 µm of EPS material surrounding these cells (Fig. S3). FISH/CLSM probing (Fig. 238 

3) showed that the Actinobacteria (red) and γ-Proteobacteria (blue) were clustered 239 

together, with Firmicutes (green) being situated amongst the periphery of these 240 

clusters within the centre of the floc. The flocs ranged from 50 – 250 µm in diameter 241 

and most featured a central well defined mass with looser less formed sections 242 

attached. The denser areas of the flocs showed higher numbers of cells and more 243 

concentrated areas of all EPS components.   244 

The initial extraction of the floc associated EPS using sonication and ethanol 245 

precipitation removed a primary, lipid rich EPS, consisting of 8.4 mg/g VS of lipids, 246 

carbohydrates (3.2 mg/g VS) and low levels (<1 mg/g VS) of protein and eDNA (Fig. 247 

S4). EDTA extraction yielded a significantly greater mass of volatile solids, with the 248 

EPS extracted being carbohydrate rich (38.2 mg/g VS); again, eDNA and proteins 249 

were also part of the EPS structure, with lipids being the least dominant component 250 

following EDTA extraction. The extraction process was able to extract a combined 251 

41.4 ± 3.7 mg/g VS carbohydrate, 5.0 ± 0.7 mg/g VS of eDNA, 9.7 ± 1.0 mg/g VS and 252 

4.7 ± 0.2 mg/g VS protein with a dry weight content of the microcosm of 15.5 g/L of 253 

which 44.4 % was volatile solids and 55.5 % was inorganic ash. Monomer analysis of 254 

the carbohydrate fraction of the extracted EPS (Table 1) showed half the monomers 255 

to be composed of mannose, with ribose and ribitol making up a further 20 %. A varied 256 

range of sugars were identified in smaller amounts with uronic acids also present but 257 

only making up a small proportion (4.3 %) of the total monomer composition.   258 
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The calcium content of the liquid component of the floc microcosm was 1.6 g/L which 259 

was lower than that of the abiotic comparison which measured 4.3 g/L. Analysis of the 260 

dialysed EPS via AA spectroscopy revealed 0.203 mg of calcium per mg of EPS. 261 

Investigation into the binding capacity of dialysed EPS indicated that the EPS was able 262 

to bind a further 0.173 mg/mg EPS (Fig. S5) giving a total binding capacity of 0.376 263 

mg/mg EPS. 264 

Floc profiling and response to alkaline conditions. 265 

Analysis of the zeta potential of the flocs under a range of pH values showed 266 

consistent stable potentials of -20 to -30 mV when transferred to solutions of pH 7-9 267 

and 10-12 (Fig. 4A). When subjected to a pH of 10 the zeta potential shifted to 2.65 ± 268 

0.36 mV. Following exposure of the flocs to elevated pH values representative of a 269 

GDF, flocs demonstrated the ability to grow at pH 11.0 with cell numbers increasing 270 

from a concentration of 2.5x 104 CFU/ml to 1.8 x 106 CFU/ml (Fig. 4B). When subjected 271 

to a pH of 11.5, the flocs showed only a small increase in cell concentration from 2.5 272 

x 104 CFU/ml to 4.8 x 104 CFU/ml. Cells within the floc were capable of survival when 273 

sub cultured to pH 12.0, however the concentration of cells fell sharply from 7.7 x 103 274 

CFU/ml to 4.1 x 102 CFU/ml within the first two weeks and then remained stable up to 275 

the end of week 3. At pH 13 the flocs were able to maintain detectable cell 276 

concentrations for two weeks, after which cells could not be detected. No increase in 277 

ATP values were reported from control microcosms (data not shown).  278 

The pH profiling was carried out on a sub sample of each of the surviving flocs (Fig. 279 

4C) exposed to pH 11.0, 11.5 and 12.0. The interior of the flocs in all cases had a 280 

lower pH value than the exterior pH with minimum pH values of 10.4, 10.7 and 11.6 at 281 

pH 11.0, 11.5 and 12.0 indicating pH shifts found within the flocs were 0.6, 0.8 and 0.4 282 

pH points at external pH values of 11.0, 11.5 and 12.0, respectively. These pH shifts 283 
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occurred over a short distances within the flocs with the largest pH shifts occurring 284 

over a distance of 35µm within the flocs at each pH value tested. Control profiles 285 

showed no change in pH values along profiles of similar lengths (data not shown).   286 

Discussion 287 

The work presented here provides the first comprehensive description of an alkaliphilic 288 

floc based microbial community isolated from a calcium dominated, anthropogenic 289 

hyperalkaline environment and demonstrates how adopting a floc based life style 290 

protects the microbial community from the ambient pH. This further emphasises the 291 

fact that it is the microenvironments which microorganisms create rather than the bulk 292 

environmental chemistry that determine microbial success in the environment (10, 11). 293 

The flocs isolated from this community were dominated by bacteria from the genera 294 

Alishewanella and Dietzia. Alishewanella has been previously reported to form and 295 

maintain flocs due to their ability to form biofilm and pellicles (45). Bacteria from the 296 

genus Dietzia have been reported in a range of hyperalkaline areas and possess the 297 

ability to degrade a range of carbohydrates and pollutants in planktonic or biofilm form 298 

(46, 47). The large proportion of both Alishewanella and Dietzia within the community 299 

suggests they play a key role in the maintenance of the floc structure (48). Within the 300 

EPS environment, these taxa were closely associated with each other, suggesting a 301 

synergistic relationship which enhanced survival at these extremes of pH. A number 302 

of the Firmicutes detected have been previously associated with alkaline conditions, 303 

the diverse metabolic capabilities of these organism would contribute to the overall 304 

metabolism capabilities of these flocs (49-51). 305 

The carbohydrate fraction of the EPS was mannose rich, previous studies suggest 306 

that mannose rich biopolymers are directly involved in the sequestration of calcium 307 
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species (52), the results obtained within the calcium binding assay supports this 308 

conclusion. The eDNA component of the EPS although acidic in nature due to the 309 

linkage of nucleotides by the 3' - 5' phosphodiester bonds, most likely plays a role in 310 

calcium sequestering due to its thermodynamically favourable interaction with calcium 311 

ions (53). Calcium has been shown to promote bioflocculation (54), as evidenced by 312 

the production of flocs up to 240µm. Here, the sequestration of calcium appears to 313 

play two key roles; structural support and the buffering of pH. The interactions with 314 

eDNA and formation of carbonates provides structural support to the floc where SEM 315 

investigations clearly showed that EPS was bound to calcium carbonate precipitates 316 

and previous research has shown that eDNA maintains Alishewanella associated 317 

biofilm structure (9).  318 

CLSM imaging of the flocs suggested that the basal layer of the aggregate provides a 319 

hydrophobic core to the aggregate. This increase in hydrophobicity would reduce the 320 

transport of hydroxide ions into the centre of the flocs resulting in a lower core pH. 321 

Acidic phospholipids are also associated with alkaliphilic bacterial membranes and 322 

may also buffer against the external pH (55). Proteins coated the carbohydrate 323 

fractions of the EPS, where the production of extracellular proteins has been 324 

implicated with the promotion of flocculation (56), however these proteins may also 325 

buffer the local environment through their acidic nature as previously observed in 326 

alkaliphilic bacteria (57).  327 

In their cultured state, the flocs had an internal pH of 10.4 in an external environment 328 

of pH11.0. Following subculture to a fresh media at this pH, increase in biomass and 329 

further floc production was observed. Zeta potential measurements indicated that floc 330 

formation was favoured at pH values close to the internal pH of the flocs (pH 10-11). 331 

Sub culturing at pH values >pH 10.0 resulted in decreased viability of the floc 332 
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community, with a complete cessation of growth at pH 13.0. Survival of the flocs was 333 

observed at pH 11.5, where energy associated with the generation of biomass is likely 334 

to have been diverted into the maintenance of the internal floc pH to ≈ pH 10.7. The 335 

subculturing of flocs at pH 12.0 resulted in the loss of biomass, whilst the flocs 336 

remained stable. The floc internal pH was now pH 11.6, suggesting the survival of only 337 

the most alkaliphilic microorganisms, with much of the energetic process used to 338 

maintain the internal floc pH. Although the shift in pH may only have been 0.4 – 0.8 339 

units, at these extremes of pH the differential in hydroxyl ion concentration between 340 

the internal and external floc surfaces was substantial (between 0.25 to 4.0 mM).    341 

The floc community described within this study was grown using the major carbon 342 

source expected within a cementitious GDF for ILW and is the first to be evaluated for 343 

its survival and propagation within the calcium dominated hyperalkaline conditions 344 

expected within such a disposal concept. The ability of flocs to survive at pH 12.0 and 345 

persist short term at pH 13.0 suggest that microbial communities will require regions 346 

of lower pH (<pH 12.0) than that anticipated to dominate a cementitious GDF (pH 12.5 347 

for several tens of thousands of years (2)) if they are to become established. However, 348 

once established the survival of these flocs and the range of sizes observed suggest 349 

that some flocs could migrate from these regions to further colonise the facility. There 350 

is recent evidence (58) that microbial communities can reduce the ambient pH under 351 

ILW conditions suggesting that the creation of low pH regions within an cementitious 352 

GDF by microbial activity is possible. This would then provide initiation points from 353 

which floc forming communities such as those described in this paper could propagate.  354 

Overall our study demonstrates that in order to survive hyper-alkaline conditions 355 

microorganisms are able to form multi species flocs composed of a complex mixture 356 

of EPS which provides protection from alkaline pH values up to pH 13.0.  The formation 357 
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of these flocs provides the microbial communities concerned with a means of 358 

dispersion and propagation within hyper-alkaline environments such as a cementitious 359 

GDF for ILW.  360 
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Table and Figure Legends 572 

Sugar Composition (%) 

Mannose 50.53 

Ribose 9.89 

Ribitol 9.73 

Arabinose 5.71 

Rhamnose 5.07 

Galactose 4.45 

Trehalose 4.45 

Glucuronic 3.51 

Xylose 2.91 

Fucose 2.00 

Glucose 0.99 

Galacturonic 0.76 

 573 

Table 1: Monomer composition of carbohydrates associated with floc EPS. 574 

Mannose accounted for 50 % of the monomers present with ribose and ribitol making 575 

up a further 20 %. A varied range of sugars were identified in smaller amounts with 576 

uronic acids also present but only making up 4.3 % of the total monomer composition.   577 

 578 
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 579 

Fig. 1: 16S rRNA gene profile of the microcosm community. The microcosm 580 

community was dominated by sequence reads associated with the Phyla 581 

Proteobacteria (39.49 %), Actinobacteria (32.93 %), Firmicutes (24.85 %) and 582 

Bacteroidetes (2.34 %) making up 99.6 % of the library (Inner pie chart). The 583 

Proteobacteria and Actinobacteria were each dominated by sequence reads 584 

associated with Alishewanella (31.81 %) and Dietzia (26.74 %) respectively (Outer 585 

chart ring).  586 
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 587 

Fig. 2: CLSM imaging of EPS components. CLSM revealed the flocs to be 588 

composed of a complex mixture of proteins, carbohydrates, lipids, eDNA and cells. 589 

The most basal layer of the floc was composed primarily of lipids and β-1,4 and β-1,3 590 

polysaccharides, where the most outer layers of the floc were composed of 591 

concentrated areas of proteins, these regions were surrounded by α-mannopyranosyl 592 

and α-glucopyranosyl sugars which were also closely associated with eDNA. Images 593 
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in the left column show the individual components of the EPS, images in the right hand 594 

column show the composite images. 595 

 596 

Fig 3. FISH/CLSM imaging of the bacterial floc community. The optical Z stack 597 

shows the bacterial cells to be concentrated in the centre of the floc, surrounded by 598 

~10 µm of EPS material (z(y), z (x) images). FISH/CLSM probing showed that the 599 

Actinobacteria (red) and γ-Proteobacteria (blue) were clustered together, with 600 

Firmicutes (green) being situated to the periphery of these clusters. The flocs ranged 601 

from 50 – 250 µm in diameter and most featured a central well defined mass with 602 
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looser less formed sections attached. The denser areas of the flocs showed higher 603 

numbers of cells and more concentrated areas of all EPS components.   604 

 605 

Figure 4: Floc response to pH. Analysis of the zeta potential of the flocs under a 606 

range of pH values showed consistent stable potentials of -20 to -30 mV between pH 607 

7-9 and 10-12 (Fig. 4A). Following exposure to elevated pH values flocs demonstrated 608 

the ability to grow at pH 11.0, survive for >3 weeks at pH 12.0 and 2 weeks at pH 13.0 609 

(Fig. 4B). Profiling of the pH indicated that the interior of the flocs had a lower pH value 610 

than the exterior pH when exposed to pH 11.0, 11.5 and 12.0 indicating pH shifts of 611 
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0.6, 0.8 and 0.4 pH units. These pH shifts occurred over short distances with the 612 

largest pH shifts occurring over a distance of 35µm (Fig. 4C).  613 

 614 
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