150 research outputs found
Wind Data Mining by Kohonen Neural Networks
Time series of Circulation Weather Type (CWT), including daily averaged wind direction and vorticity, are self-classified by similarity using Kohonen Neural Networks (KNN). It is shown that KNN is able to map by similarity all 7300 five-day CWT sequences during the period of 1975–94, in London, United Kingdom. It gives, as a first result, the most probable wind sequences preceding each one of the 27 CWT Lamb classes in that period. Inversely, as a second result, the observed diffuse correlation between both five-day CWT sequences and the CWT of the 6(th) day, in the long 20-year period, can be generalized to predict the last from the previous CWT sequence in a different test period, like 1995, as both time series are similar. Although the average prediction error is comparable to that obtained by forecasting standard methods, the KNN approach gives complementary results, as they depend only on an objective classification of observed CWT data, without any model assumption. The 27 CWT of the Lamb Catalogue were coded with binary three-dimensional vectors, pointing to faces, edges and vertex of a “wind-cube,” so that similar CWT vectors were close
Guilty by dissociation—development of gas chromatography–mass spectrometry (GC-MS) and other rapid screening methods for the analysis of 13 diphenidine-derived new psychoactive substances (NPSs)
© 2016, Springer-Verlag Berlin Heidelberg.The prevalence of new psychoactive substances (NPSs) in forensic casework has increased prominently in recent years. This has given rise to significant legal and analytical challenges in the identification of these substances. The requirement for validated, robust and rapid testing methodologies for these compounds is obvious. This study details the analysis of 13 synthesised diphenidine derivatives encountered in casework using presumptive testing, thin layer chromatography and gas chromatography–mass spectrometry (GC-MS). Specifically, the validated GC-MS method provides, for the first time, both a general screening method and quantification of the active components for seized solid samples, both in their pure form and in the presence of common adulterants. [Figure not available: see fulltext.
A rainfall model for drought risk analysis in south-east UK
Drought risk assessment ideally requires long-term rainfall records especially where inter-annual droughts are of potential concern, and spatially consistent estimates of rainfall to support regional and inter-regional scale assessments. This paper addresses these challenges by developing a spatially consistent stochastic model of monthly rainfall for south-east UK. Conditioned on 50 gauged sites, the model infills the historic record from 1855-2011 in both space and time, and extends the record by synthesising droughts which are consistent with the observed rainfall statistics. The long record length allows more insight into the variability of rainfall and potentially a stronger basis for risk assessment than is generally possible. It is shown that, although localised biases exist in both space and time, the model results are generally consistent with the observed record including for a range of inter-annual droughts and spatial statistics. Simulations show that some of the most severe inter-annual droughts on the record may recur, despite a trend towards generally wetter winters
Western Indian Ocean marine and terrestrial records of climate variability: a review and new concepts on land-ocean interactions since AD 1660
We examine the relationship between three tropical and two subtropical western Indian Ocean coral oxygen isotope time series to surface air temperatures (SAT) and rainfall over India, tropical East Africa and southeast Africa. We review established relationships, provide new concepts with regard to distinct rainfall seasons, and mean annual temperatures. Tropical corals are coherent with SAT over western India and East Africa at interannual and multidecadal periodicities. The subtropical corals correlate with Southeast African SAT at periodicities of 16–30 years. The relationship between the coral records and land rainfall is more complex. Running correlations suggest varying strength of interannual teleconnections between the tropical coral oxygen isotope records and rainfall over equatorial East Africa. The relationship with rainfall over India changed in the 1970s. The subtropical oxygen isotope records are coherent with South African rainfall at interdecadal periodicities. Paleoclimatological reconstructions of land rainfall and SAT reveal that the inferred relationships generally hold during the last 350 years. Thus, the Indian Ocean corals prove invaluable for investigating land–ocean interactions during past centuries
Gordon Valentine Manley and his contribution to the study of climate change: a review of his life and work
British climatologist and geographer, Gordon Manley (1902–1980), is perhaps best known for his pioneering work on climate variability in the UK, for establishing the Central England Temperature series and, for his pivotal role in demonstrating the powerful relationship between climate, weather, and culture in post-World War II Britain. Yet Manley made many contributions, both professional and popular, to climate change debates in the twentieth century, where climate change is broadly understood to be changes over a range of temporal and spatial scales rather than anthropogenic warming per se. This review first establishes how Manley's work, including that on snow and ice, was influenced by key figures in debates over climatic amelioration around the North Atlantic between 1920s and 1950s. His research exploring historical climate variability in the UK using documentary sources is then discussed. His perspectives on the relationship between climate changes and cultural history are reviewed, paying particular attention to his interpretation of this relationship as it played out in the UK. Throughout, the review aims to show Manley to be a fieldworker and an empiricist and reveals how he remained committed to rigorous scientific investigation despite changing trends within his academic discipline
Changes in Present and Future Circulation Types Frequency in Northwest Iberian Peninsula
The aim of the work described herein was to study projection scenarios in order to find changes in the synoptic variability of the northwest Iberian Peninsula in the 21st century. To this end, we investigated the changes in the frequency of the different circulation types computed for the study area using three different models used in the IPCC 4th assessment report. The circulation types were computed using the procedure known as Lamb circulation types. The control simulation for the late 20th century was evaluated objectively from the results obtained using data from the NCEP/NCAR reanalysis, as to evaluate the ability of the model to reproduce the present climate. We have compared not only seasonal mean sea level pressure fields but also the mean seasonal frequency of circulation types. The results for the end of the 21st century show a decrease in the frequency of cyclonic, W, and SW circulation types in the spring and summer months. This trend also appears in the autumn, with a concomitant increase in the anticyclonic types
Basin-Scale Control on the Phytoplankton Biomass in Lake Victoria, Africa
The relative bio-optical variability within Lake Victoria was analyzed through the spatio-temporal decomposition of a 1997–2004 dataset of remotely-sensed reflectance ratios in the visible spectral range. Results show a regular seasonal pattern with a phase shift (around 2 months) between the south and north parts of the lake. Interannual trends suggested a teleconnection between the lake dynamics and El-Niño phenomena. Both seasonal and interannual patterns were associated to conditions of light limitation for phytoplankton growth and basin-scale hydrodynamics on phytoplankton access to light. Phytoplankton blooms developed during the periods of lake surface warming and water column stability. The temporal shift apparent in the bio-optical seasonal cycles was related to the differential cooling of the lake surface by southeastern monsoon winds. North-south differences in the exposure to trade winds are supported by the orography of the Eastern Great Rift Valley. The result is that surface layer warming begins in the northern part of the lake while the formation of cool and dense water continues in the southern part. The resulting buoyancy field is sufficient to induce a lake-wide convective circulation and the tilting of the isotherms along the north-south axis. Once surface warming spreads over the whole lake, the phytoplankton bloom dynamics are subjected to the internal seiche derived from the relaxation of thermocline tilting. In 1997–98, El-Niño phenomenon weakened the monsoon wind flow which led to an increase in water column stability and a higher phytoplankton optical signal throughout the lake. This suggests that phytoplankton response to expected climate scenarios will be opposite to that proposed for nutrient-limited great lakes. The present analysis of remotely-sensed bio-optical properties in combination with environmental data provides a novel basin-scale framework for research and management strategies in Lake Victoria
A discursive review of the textual use of ‘trapped’ in environmental migration studies: The conceptual birth and troubled teenage years of trapped populations
First mooted in 2011, the concept of Trapped Populations referring to people unable to move from environmentally high-risk areas broadened the study of human responses to environmental change. While a seemingly straightforward concept, the underlying discourses around the reasons for being ‘trapped’, and the language describing the concept have profound influences on the way in which policy and practice approaches the needs of populations at risk from environmental stresses and shocks. In this article, we apply a Critical Discourse Analysis to the academic literature on the subject to reveal some of the assumptions implicit within discussing ‘trapped’ populations. The analysis reveals a dominant school of thought that assisted migration, relocation, and resettlement in the face of climate change are potentially effective adaptation strategies along a gradient of migrant agency and governance
Spatial Patterns in Herbivory on a Coral Reef Are Influenced by Structural Complexity but Not by Algal Traits
Background: Patterns of herbivory can alter the spatial structure of ecosystems, with important consequences for ecosystem functions and biodiversity. While the factors that drive spatial patterns in herbivory in terrestrial systems are well established, comparatively less is known about what influences the distribution of herbivory in coral reefs. Methodology and Principal Findings: We quantified spatial patterns of macroalgal consumption in a cross-section of Ningaloo Reef (Western Australia). We used a combination of descriptive and experimental approaches to assess the influence of multiple macroalgal traits and structural complexity in establishing the observed spatial patterns in macroalgal herbivory, and to identify potential feedback mechanisms between herbivory and macroalgal nutritional quality. Spatial patterns in macroalgal consumption were best explained by differences in structural complexity among habitats. The biomass of herbivorous fish, and rates of herbivory were always greater in the structurally-complex coral-dominated outer reef and reef flat habitats, which were also characterised by high biomass of herbivorous fish, low cover and biomass of macroalgae and the presence of unpalatable algae species. Macroalgal consumption decreased to undetectable levels within 75 m of structurally-complex reef habitat, and algae were most abundant in the structurally-simple lagoon habitats, which were also characterised by the presence of the most palatable algae species. In contrast to terrestrial ecosystems, herbivory patterns were not influenced by the distribution, productivity or nutritional quality of resources (macroalgae), and we found no evidence of a positive feedback between macroalgal consumption and the nitrogen content of algae. Significance: This study highlights the importance of seascape-scale patterns in structural complexity in determining spatial patterns of macroalgal consumption by fish. Given the importance of herbivory in maintaining the ability of coral reefs to reorganise and retain ecosystem functions following disturbance, structural complexity emerges as a critical feature that is essential for the healthy functioning of these ecosystems
- …