17 research outputs found

    De Novo Truncating Mutations in WASF1 Cause Intellectual Disability with Seizures.

    Get PDF
    Next-generation sequencing has been invaluable in the elucidation of the genetic etiology of many subtypes of intellectual disability in recent years. Here, using exome sequencing and whole-genome sequencing, we identified three de novo truncating mutations in WAS protein family member 1 (WASF1) in five unrelated individuals with moderate to profound intellectual disability with autistic features and seizures. WASF1, also known as WAVE1, is part of the WAVE complex and acts as a mediator between Rac-GTPase and actin to induce actin polymerization. The three mutations connected by Matchmaker Exchange were c.1516C>T (p.Arg506Ter), which occurs in three unrelated individuals, c.1558C>T (p.Gln520Ter), and c.1482delinsGCCAGG (p.Ile494MetfsTer23). All three variants are predicted to partially or fully disrupt the C-terminal actin-binding WCA domain. Functional studies using fibroblast cells from two affected individuals with the c.1516C>T mutation showed a truncated WASF1 and a defect in actin remodeling. This study provides evidence that de novo heterozygous mutations in WASF1 cause a rare form of intellectual disability

    Germline selection shapes human mitochondrial DNA diversity.

    Get PDF
    Approximately 2.4% of the human mitochondrial DNA (mtDNA) genome exhibits common homoplasmic genetic variation. We analyzed 12,975 whole-genome sequences to show that 45.1% of individuals from 1526 mother-offspring pairs harbor a mixed population of mtDNA (heteroplasmy), but the propensity for maternal transmission differs across the mitochondrial genome. Over one generation, we observed selection both for and against variants in specific genomic regions; known variants were more likely to be transmitted than previously unknown variants. However, new heteroplasmies were more likely to match the nuclear genetic ancestry as opposed to the ancestry of the mitochondrial genome on which the mutations occurred, validating our findings in 40,325 individuals. Thus, human mtDNA at the population level is shaped by selective forces within the female germ line under nuclear genetic control, which ensures consistency between the two independent genetic lineages.NIHR, Wellcome Trust, MRC, Genomics Englan

    Telomerecat: A ploidy-agnostic method for estimating telomere length from whole genome sequencing data (vol 8, 1300, 2018)

    Get PDF

    Surgical removal of adrenal hemangioma after five years of follow-up: a case report

    Get PDF
    A case of adrenal hemangioma is reported. A 2.5 x 2.5 cm right adrenal tumor was discovered incidentally in a 61-year-old woman by computed tomography in October 1992. Hormonal levels were within the normal ranges, and the patient was followed for five years under a diagnosis of non-functioning adrenal tumor. The tumor enlarged slowly to 4.6 x 4.2 cm. Then the tumor was removed surgically and the pathological examination revealed adrenal cavernous hemangioma

    Measurement of Typhi Vi antibodies can be used to assess adaptive immunity in patients with immunodeficiency

    No full text
    Vaccine‐specific antibody responses are essential in the diagnosis of antibody deficiencies. Responses to Pneumovax II are used to assess the response to polysaccharide antigens, but interpretation may be complicated. Typhim Vi®, a polysaccharide vaccine for Salmonella typhoid fever, may be an additional option for assessing humoral responses in patients suspected of having an immunodeficiency. Here we report a UK multi‐centre study describing the analytical and clinical performance of a Typhi Vi immunoglobulin (Ig)G enzyme‐linked immunosorbent assay (ELISA) calibrated to an affinity‐purified Typhi Vi IgG preparation. Intra‐ and interassay imprecision was low and the assay was linear, between 7·4 and 574 U/ml (slope = 0·99–1·00; R2 > 0·99); 71% of blood donors had undetectable Typhi Vi IgG antibody concentrations. Of those with antibody concentrations > 7·4 U/ml, the concentration range was 7·7–167 U/ml. In antibody‐deficient patients receiving antibody replacement therapy the median Typhi Vi IgG antibody concentrations were < 25 U/ml. In vaccinated normal healthy volunteers, the median concentration post‐vaccination was 107 U/ml (range 31–542 U/ml). Eight of eight patients (100%) had post‐vaccination concentration increases of at least threefold and six of eight (75%) of at least 10‐fold. In an antibody‐deficient population (n = 23), only 30% had post‐vaccination concentration increases of at least threefold and 10% of at least 10‐fold. The antibody responses to Pneumovax II and Typhim Vi® correlated. We conclude that IgG responses to Typhim Vi® vaccination can be measured using the VaccZyme Salmonella typhi Vi IgG ELISA, and that measurement of these antibodies maybe a useful additional test to accompany Pneumovax II responses for the assessment of antibody deficiencies

    Measurement of Typhi Vi antibodies can be used to assess adaptive immunity in patients with immunodeficiency

    No full text
    Vaccine‐specific antibody responses are essential in the diagnosis of antibody deficiencies. Responses to Pneumovax II are used to assess the response to polysaccharide antigens, but interpretation may be complicated. Typhim Vi®, a polysaccharide vaccine for Salmonella typhoid fever, may be an additional option for assessing humoral responses in patients suspected of having an immunodeficiency. Here we report a UK multi‐centre study describing the analytical and clinical performance of a Typhi Vi immunoglobulin (Ig)G enzyme‐linked immunosorbent assay (ELISA) calibrated to an affinity‐purified Typhi Vi IgG preparation. Intra‐ and interassay imprecision was low and the assay was linear, between 7·4 and 574 U/ml (slope = 0·99–1·00; R2 > 0·99); 71% of blood donors had undetectable Typhi Vi IgG antibody concentrations. Of those with antibody concentrations > 7·4 U/ml, the concentration range was 7·7–167 U/ml. In antibody‐deficient patients receiving antibody replacement therapy the median Typhi Vi IgG antibody concentrations were < 25 U/ml. In vaccinated normal healthy volunteers, the median concentration post‐vaccination was 107 U/ml (range 31–542 U/ml). Eight of eight patients (100%) had post‐vaccination concentration increases of at least threefold and six of eight (75%) of at least 10‐fold. In an antibody‐deficient population (n = 23), only 30% had post‐vaccination concentration increases of at least threefold and 10% of at least 10‐fold. The antibody responses to Pneumovax II and Typhim Vi® correlated. We conclude that IgG responses to Typhim Vi® vaccination can be measured using the VaccZyme Salmonella typhi Vi IgG ELISA, and that measurement of these antibodies maybe a useful additional test to accompany Pneumovax II responses for the assessment of antibody deficiencies

    Outcomes of splenectomy in patients with common variable immunodeficiency (CVID): a survey of 45 patients.

    No full text
    Splenectomy has been used in patients with common variable immunodeficiency disorders (CVID), mainly in the context of refractory autoimmune cytopenia and suspected lymphoma, but there are understandable concerns about the potential of compounding an existing immunodeficiency. With increasing use of rituximab as an alternative treatment for refractory autoimmune cytopenia, the role of splenectomy in CVID needs to be re-examined. This retrospective study provides the largest cohesive data set to date describing the outcome of splenectomy in 45 CVID patients in the past 40 years. Splenectomy proved to be an effective long-term treatment in 75% of CVID patients with autoimmune cytopenia, even in some cases when rituximab had failed. Splenectomy does not worsen mortality in CVID and adequate immunoglobulin replacement therapy appears to play a protective role in overwhelming post-splenectomy infections. Future trials comparing the effectiveness and safety of rituximab and splenectomy are needed to provide clearer guidance on the second-line management of autoimmune cytopenia in CVID

    Telomerecat: A ploidy-agnostic method for estimating telomere length from whole genome sequencing data

    No full text
    Telomere length is a risk factor in disease and the dynamics of telomere length are crucial to our understanding of cell replication and vitality. The proliferation of whole genome sequencing represents an unprecedented opportunity to glean new insights into telomere biology on a previously unimaginable scale. To this end, a number of approaches for estimating telomere length from whole-genome sequencing data have been proposed. Here we present Telomerecat, a novel approach to the estimation of telomere length. Previous methods have been dependent on the number of telomeres present in a cell being known, which may be problematic when analysing aneuploid cancer data and non-human samples. Telomerecat is designed to be agnostic to the number of telomeres present, making it suited for the purpose of estimating telomere length in cancer studies. Telomerecat also accounts for interstitial telomeric reads and presents a novel approach to dealing with sequencing errors. We show that Telomerecat performs well at telomere length estimation when compared to leading experimental and computational methods. Furthermore, we show that it detects expected patterns in longitudinal data, repeated measurements, and cross-species comparisons. We also apply the method to a cancer cell data, uncovering an interesting relationship with the underlying telomerase genotype
    corecore