26 research outputs found

    Drainage integration and sediment dispersal in active continental rifts:A numerical modelling study of the central Italian Apennines

    Get PDF
    Progressive integration of drainage networks during active crustal extension is observed in continental areas around the globe. This phenomenon is often explained in terms of headward erosion, controlled by the distance to an external base‐level (e.g. the coast). However, conclusive field evidence for the mechanism(s) driving integration is commonly absent as drainage integration events are generally followed by strong erosion. Based on a numerical modelling study of the actively extending central Italian Apennines, we show that overspill mechanisms (basin overfilling and lake overspill) are more likely mechanisms for driving drainage integration in extensional settings and that the balance between sediment supply vs. accommodation creation in fault‐bounded basins is of key importance. In this area drainage integration is evidenced by lake disappearance since the early Pleistocene and the transition from internal (endorheic) to external drainage, i.e. connected to the coast. Using field observations from the central Apennines, we constrain normal faulting and regional surface uplift within the surface process model CASCADE (Braun & Sambridge, 1997, Basin Research, 9, 27) and demonstrate the phenomenon of drainage integration, showing how it leads to the gradual disappearance of lakes and the transition to an interconnected fluvial transport system over time. Our model results show that, in the central Apennines, the relief generated through both regional uplift and fault‐block uplift produces sufficient sediment to fill the extensional basins, enabling overspill and individual basins to eventually become fluvially connected. We discuss field observations that support our findings and throw new light upon previously published interpretations of landscape evolution in this area. We also evaluate the implications of drainage integration for topographic development, regional sediment dispersal and offshore sediment supply. Finally, we discuss the applicability of our results to other continental rifts (including those where regional uplift is absent) and the importance of drainage integration for transient landscape evolution.publishedVersio

    Shallow-water hydrothermal venting linked to the Palaeocene–Eocene Thermal Maximum

    Get PDF
    The Palaeocene–Eocene Thermal Maximum (PETM) was a global warming event of 5–6 °C around 56 million years ago caused by input of carbon into the ocean and atmosphere. Hydrothermal venting of greenhouse gases produced in contact aureoles surrounding magmatic intrusions in the North Atlantic Igneous Province have been proposed to play a key role in the PETM carbon-cycle perturbation, but the precise timing, magnitude and climatic impact of such venting remains uncertain. Here we present seismic data and the results of a five-borehole transect sampling the crater of a hydrothermal vent complex in the Northeast Atlantic. Stable carbon isotope stratigraphy and dinoflagellate cyst biostratigraphy reveal a negative carbon isotope excursion coincident with the appearance of the index taxon Apectodinium augustum in the vent crater, firmly tying the infill to the PETM. The shape of the crater and stratified sediments suggests large-scale explosive gas release during the initial phase of vent formation followed by rapid, but largely undisturbed, diatomite-rich infill. Moreover, we show that these vents erupted in very shallow water across the North Atlantic Igneous Province, such that volatile emissions would have entered the atmosphere almost directly without oxidation to CO2 and at the onset of the PETM

    Shallow-water hydrothermal venting linked to the Palaeocene–Eocene Thermal Maximum

    Get PDF
    The Palaeocene–Eocene Thermal Maximum (PETM) was a global warming event of 5–6 °C around 56 million years ago caused by input of carbon into the ocean and atmosphere. Hydrothermal venting of greenhouse gases produced in contact aureoles surrounding magmatic intrusions in the North Atlantic Igneous Province have been proposed to play a key role in the PETM carbon-cycle perturbation, but the precise timing, magnitude and climatic impact of such venting remains uncertain. Here we present seismic data and the results of a five-borehole transect sampling the crater of a hydrothermal vent complex in the Northeast Atlantic. Stable carbon isotope stratigraphy and dinoflagellate cyst biostratigraphy reveal a negative carbon isotope excursion coincident with the appearance of the index taxon Apectodinium augustum in the vent crater, firmly tying the infill to the PETM. The shape of the crater and stratified sediments suggests large-scale explosive gas release during the initial phase of vent formation followed by rapid, but largely undisturbed, diatomite-rich infill. Moreover, we show that these vents erupted in very shallow water across the North Atlantic Igneous Province, such that volatile emissions would have entered the atmosphere almost directly without oxidation to CO2 and at the onset of the PETM

    Morphotectonic Evolution of Passive Margins undergoing Active Surface Processes: Model outputs

    No full text
    Extension of the continental lithosphere can lead to the formation of rifted margins with contrasting tectonic and geomorphologic characteristics. Many of these characteristics depend on the manner extension is spatially distributed. Here we investigate the feedback between tectonics and the transfer of material at the surface resulting from erosion, transport, and sedimentation and discuss how they influence the rifting process. We use large-scale (1200 x 600 km), high-resolution (1km) numerical experiments coupling a 2D upper-mantle-scale thermo-mechanical model with a plan-form 2D surface processes model. We test the sensitivity of the coupled models to varying crust-lithospheric rheology and erosional efficiency. We confirm that the development and long-term support of topography is dependent on the strength of the coupling between the crust and the mantle lithosphere. Strong coupling promotes high topography as the integrated strength of the lithosphere is sufficient to support the additional stress. Weak coupling results in the stress being relaxed via viscous flow in the middle/lower crust and leads to more subdued topography. Erosion and transport of sediment modulates this behaviour but has only minor effect on the overall structure of the rift. High erosion efficiency counters the development of high topography and creates complex landscape morphologies while low erosion efficiency allows for longer standing high topography and results in more simple landscape morphologies. The transfer of mass between the continent and the basin alter the stress field at the onshore-offshore transition and facilitates the development of faults, increasing their offsets and keeping them active over a longer period

    Input and output files from 2-D geodynamic numerical models

    No full text
    Here we present high-resolution 2-D coupled tectonic-surface processes modeling of extensional basin formation. We focus on understanding feedbacks between erosion and deposition and tectonics during rift and passive margin formation. We test the combined effects of crustal rheology and varying surface process efficiency on structural style of rift and passive margin formation. The forward models presented here allow to identify the following four feedback relations between surface processes and tectonic deformation during rifted margin formation. (1) Erosion and deposition promote strain localization and enhance large offset asymmetric normal fault growth. (2) Progressive infill from proximal to more distal half-grabens promotes the formation of synthetic sets of basin ward dipping normal faults for intermediate crustal strength cases. (3) Sediment loading on top of undeformed crustal rafts in weak crust cases enhances mid and lower crustal flow resulting in sag basin subsidence. (4) Interaction of high sediment supply to the distal margin in very weak crust cases results in detachment based rollover sedimentary basins. Our models further show that erosion efficiency and drainage area provide a first order control on sediment supply during rifting where rift related topography is relatively quickly eroded. Long term sustained sediment supply to the rift basins requires elevated onshore drainage basins. We discuss similar variations in structural style observed in natural systems and compare them with the feedbacks identified here

    Melt volume at Atlantic volcanic rifted margins controlled by depth-dependent extension and mantle temperature: Model outputs

    Get PDF
    Breakup volcanism along rifted passive margins is highly variable in time and space. The factors controlling magmatic activity during continental rifting and breakup are not resolved and controversial. Here we use numerical models to investigate melt generation at rifted margins with contrasting rifting styles corresponding to those observed in natural systems. Our results demonstrate a surprising correlation of enhanced magmatism with margin width. This relationship is explained by depth-dependent extension, during which the lithospheric mantle ruptures earlier than the crust, and is confirmed by a semi-analytical prediction of melt volume over margin width. The results presented here show that the effect of increased mantle temperature at wide volcanic margins is likely over-estimated, and demonstrate that the large volumes of magmatism at volcanic rifted margin can be explained by depth-dependent extension and very moderate excess mantle potential temperature in the order of 50-80 °C, significantly smaller than previously suggested

    Extensional inheritance and surface processes as controlling factors of mountain belt structure

    Get PDF
    Surface processes and inherited structures are widely regarded as factors that strongly influence the evolution of mountain belts. The first-order effects of these parameters have been studied extensively throughout the last decades, but their relative importance remains notoriously difficult to assess and document. We use lithospheric scale plane-strain thermomechanical model experiments to study the effects of surface processes and extensional inheritance on the internal structure of contractional orogens and their foreland basins. Extensional inheritance is modeled explicitly by forward modeling the formation of a rift basin before reversing the velocity boundary conditions to model its inversion. Surface processes are modeled through the combination of a simple sedimentation algorithm, where all negative topography is filled up to a prescribed reference level, and an elevation-dependent erosion model. Our results show that (1) extensional inheritance facilitates the propagation of basement deformation in the retro-wedge and (2) increases the width of the orogen; (3) sedimentation increases the length scale of both thin-skinned and thick-skinned thrust sheets and (4) results in a wider orogen; (5) erosion helps to localize deformation resulting in a narrower orogen and a less well-developed retro-wedge. A comparison of the modeled behaviors to the High Atlas, the Pyrenees, and the Central Alps, three extensively studied natural examples characterized by different degrees of inversion, is presented and confirms the predicted controls of surface processes and extensional inheritance on orogenic structure

    Beaumont numbers and associated values of several mountain belts on Earth

    No full text
    <p>This file contains the data shown in table 1 in the Article: Tectonics or Surface Processes during orogenesis - the Beaumont number: II. Application to orogens on Earth.</p><p>Variable definitions:<br>NAndes are the Northern Andes, CAndes are the central Andes, EurAlps are the European Alps, Him is Himalaya-Tibet, Pyr are the Pyrenees, SANZ are the Southern Alps of New Zealand, TW is Taiwan, TS is the Tian Shan, Zag is the Zagros. <br>Bm is the Beaumont number (mean value), Kf is the fluvial erodibility (mean value), vc is the convergence or shortening rate (mean value), Fint is the integrated crustal strength of the orogen foreland (mean value), and AvgPrecip is the mean annual precipitation (mean value). BmVar, KfVar, vcVar, and FintVar are the variability of the respective mean values. AvgPrecipSTD is the standard deviation of AvgPrecip.</p&gt
    corecore