1,798 research outputs found
Recommended from our members
A momentary blip or a step forward in revisionist free movement? - Case C-308/14 European Commission v. United Kingdom of Great Britain and Northern Ireland (14 June 2016)
How could sensor-based measurement of physical activity be used in cardiovascular healthcare?
Physical activity and cardiovascular disease (CVD) are intimately linked. Low levels of physical activity increase the risk of CVDs, including myocardial infarction and stroke. Conversely, when CVD develops, it often reduces the ability to be physically active. Despite these largely understood relationships, the objective measurement of physical activity is rarely performed in routine healthcare. The ability to use sensor-based approaches to accurately measure aspects of physical activity has the potential to improve many aspects of cardiovascular healthcare across the spectrum of healthcare, from prediction, prevention, diagnosis, and treatment to disease monitoring. This review discusses the potential of sensor-based measurement of physical activity to augment current cardiovascular healthcare. We highlight many factors that should be considered to maximise the benefit and reduce the risks of such an approach. Because the widespread use of such devices in society is already a reality, it is important that scientists, clinicians, and healthcare providers are aware of these considerations
Solar sail capture trajectories at Mercury
Mercury is an ideal environment for future planetary exploration by solar sail since it has proved difficult to reach with conventional propulsion and hence remains largely unexplored. In addition, its proximity to the Sun provides a solar sail acceleration of order ten times the sail characteristic acceleration at 1 AU. Conventional capture techniques are shown to be unsuitable for solar sails and a new method is presented. It is shown that capture is bound by upper and lower limits on the orbital elements of the approach orbit and that failure to be within limits results in a catastrophic collision with the planet. These limits are presented for a range of capture inclinations and sail characteristic accelerations. It is found that sail hyperbolic excess velocity is a critical parameter during capture at Mercury, with only a narrow allowed band in order to avoid collision with the planet. The new capture methodis demonstrated for a Mercury sample return mission
Residual stress characterization of single and triple-pass autogenously welded stainless steel pipes
Using neutron diffraction the components of the residual stress field have been determined in the region near a mid-length groove in two identical austenitic stainless pipes in which weld beads had been laid down. One pipe sample had a single pass, and the second a triple pass, autogenous weld deposited around the groove circumference. The results show the effect on the stress field of the additional weld deposited and are compared to the results of Finite Element Modelling. The hoop stress component is found to be generally tensile, and greater in the triple pass weldment than in the single pass weldment. The hoop stresses reach peak values of around 400 MPa in tension. X-ray measurements of the residual stress components on the near inner surface of the pipe weldments are also presented, and show tensile stresses in both pipes, with a higher magnitude in the three-pass weldment
Exact multilocal renormalization on the effective action : application to the random sine Gordon model statics and non-equilibrium dynamics
We extend the exact multilocal renormalization group (RG) method to study the
flow of the effective action functional. This important physical quantity
satisfies an exact RG equation which is then expanded in multilocal components.
Integrating the nonlocal parts yields a closed exact RG equation for the local
part, to a given order in the local part. The method is illustrated on the O(N)
model by straightforwardly recovering the exponent and scaling
functions. Then it is applied to study the glass phase of the Cardy-Ostlund,
random phase sine Gordon model near the glass transition temperature. The
static correlations and equilibrium dynamical exponent are recovered and
several new results are obtained. The equilibrium two-point scaling functions
are obtained. The nonequilibrium, finite momentum, two-time response and
correlations are computed. They are shown to exhibit scaling forms,
characterized by novel exponents , as well as
universal scaling functions that we compute. The fluctuation dissipation ratio
is found to be non trivial and of the form . Analogies and
differences with pure critical models are discussed.Comment: 33 pages, RevTe
Overview of the SME: Implications and Phenomenology of Lorentz Violation
The Standard Model Extension (SME) provides the most general
observer-independent field theoretical framework for investigations of Lorentz
violation. The SME lagrangian by definition contains all Lorentz-violating
interaction terms that can be written as observer scalars and that involve
particle fields in the Standard Model and gravitational fields in a generalized
theory of gravity. This includes all possible terms that could arise from a
process of spontaneous Lorentz violation in the context of a more fundamental
theory, as well as terms that explicitly break Lorentz symmetry. An overview of
the SME is presented, including its motivations and construction. Some of the
theoretical issues arising in the case of spontaneous Lorentz violation are
discussed, including the question of what happens to the Nambu-Goldstone modes
when Lorentz symmetry is spontaneously violated and whether a Higgs mechanism
can occur. A minimal version of the SME in flat Minkowski spacetime that
maintains gauge invariance and power-counting renormalizability is used to
search for leading-order signals of Lorentz violation. Recent Lorentz tests in
QED systems are examined, including experiments with photons, particle and
atomic experiments, proposed experiments in space and experiments with a
spin-polarized torsion pendulum.Comment: 40 pages, Talk presented at Special Relativity: Will it Survive the
Next 100 Years? Potsdam, Germany, February, 200
Noisy random resistor networks: renormalized field theory for the multifractal moments of the current distribution
We study the multifractal moments of the current distribution in randomly
diluted resistor networks near the percolation treshold. When an external
current is applied between to terminals and of the network, the
th multifractal moment scales as , where is the correlation length exponent of
the isotropic percolation universality class. By applying our concept of master
operators [Europhys. Lett. {\bf 51}, 539 (2000)] we calculate the family of
multifractal exponents for to two-loop order. We find
that our result is in good agreement with numerical data for three dimensions.Comment: 30 pages, 6 figure
Variation in Population Attributable Fraction of Dementia Associated with Potentially Modifiable Risk Factors by Race and Ethnicity in the US
Importance: Identifying modifiable risk factors that are associated with dementia burden across racial and ethnic groups in the population can yield insights into the potential effectiveness of interventions in preventing dementia and reducing disparities. Objective: To calculate the population attributable fraction (PAF) of dementia associated with 12 established modifiable risk factors for all US adults, as well as separately by race and ethnicity. Design, Setting, and Participants: This cross-sectional study used survey data from nationally representative samples of US adults. PAFs were calculated using relative risks and prevalence estimates for 12 risk factors. Relative risks were taken from meta-analyses, as reported in a 2020 systematic review. Prevalence estimates for risk factors were derived from nationally representative cross-sectional survey data collected between 2011 and 2018. Combined PAFs were adjusted for risk factor communality using weights derived from the Atherosclerosis Risk in Communities (ARIC) study (1987-2018). Analyses were conducted May through October 2021. Exposures: Low education, hearing loss, traumatic brain injury, hypertension, excessive alcohol consumption, obesity, smoking, depression, social isolation, physical inactivity, diabetes, and air pollution. Main Outcomes and Measures: PAF for each dementia risk factor, a combined PAF, and the decrease in the number of prevalent dementia cases in 2020 that would be expected given a 15% proportional decrease in each exposure. Results: Among all US adults, an estimated 41.0% (95% CI, 22.7%-55.9%) of dementia cases were attributable to 12 risk factors. A 15% proportional decrease in each risk factor would reduce dementia prevalence in the population by an estimated 7.3% (95% CI, 3.7%-10.9%). The estimated PAF was greater for Black and Hispanic than it was for White and Asian individuals. The greatest attributable fraction of dementia cases was observed for hypertension (PAF, 20.2%; 95% CI, 6.3%-34.4%), obesity (PAF, 20.9%; 95% CI, 13.0%-28.8%), and physical inactivity (PAF, 20.1%; 95% CI, 9.1%-29.6%). These factors were also highest within each racial and ethnic group, although the proportions varied. Conclusions and Relevance: A large fraction of dementia cases in the US were associated with potentially modifiable risk factors, especially for Black and Hispanic individuals. Targeting and reducing these risk factors may curb the projected rise in dementia cases over the next several decades
Variable loss of functional activities of androgen receptor mutants in patients with androgen insensitivity syndrome
Androgen receptor (AR) mutations in androgen insensitivity syndrome (AIS) are associated with a variety of clinical phenotypes. The aim of the present study was to compare the molecular properties and potential pathogenic nature of 8 novel and 3 recurrent AR variants with a broad variety of functional assays. Eleven AR variants (p.Cys177Gly, p.Arg609Met, p.Asp691del, p.Leu701Phe, p.Leu723Phe, p.Ser741Tyr, p.Ala766Ser, p.Arg775Leu, p.Phe814Cys, p.Lys913X, p.Ile915Thr) were analyzed for hormone binding, transcriptional activation, cofactor binding, translocation to the nucleus, nuclear dynamics, and structural conformation. Ligand-binding domain variants with low to intermediate transcriptional activation displayed aberrant Kd values for hormone binding and decreased nuclear translocation. Transcriptional activation data, FxxFF-like peptide binding and DNA binding correlated well for all variants, except for p.Arg609Met, p.Leu723Phe and p.Arg775Leu, which displayed a relatively higher peptide binding activity. Variants p.Cys177Gly, p.Asp691del, p.Ala766Ser, p.Phe814Cys, and p.Ile915Thr had intermediate or wild type values in all assays and showed a predominantly nuclear localization in living cells. All transcriptionally inactive variants (p.Arg609Met, p.Leu701Phe, p.Ser741Tyr, p.Arg775Leu, p.Lys913X) were unable to bind to DNA and were associated with complete AIS. Three variants (p.Asp691del, p.Arg775Leu, p.Ile915Thr) still displayed significant functional activities in in vitro assays, although the clinical phenotype was associated with complete AIS. The data show that molecular phenotyping based on 5 different functional assays matched in most (70%) but not all cases. Copyrigh
Measurement of the Charged Multiplicities in b, c and Light Quark Events from Z0 Decays
Average charged multiplicities have been measured separately in , and
light quark () events from decays measured in the SLD experiment.
Impact parameters of charged tracks were used to select enriched samples of
and light quark events, and reconstructed charmed mesons were used to select
quark events. We measured the charged multiplicities:
,
, from
which we derived the differences between the total average charged
multiplicities of or quark events and light quark events: and . We compared
these measurements with those at lower center-of-mass energies and with
perturbative QCD predictions. These combined results are in agreement with the
QCD expectations and disfavor the hypothesis of flavor-independent
fragmentation.Comment: 19 pages LaTex, 4 EPS figures, to appear in Physics Letters
- …