117 research outputs found

    First Observations of G-Band Radar Doppler Spectra

    Get PDF
    The first Doppler spectra ever acquired by an atmospheric radar at 200 GHz (G-band) are presented. The observations were taken during a light precipitation event in May (rain rates <2 mm hr−1) at Chilbolton Observatory, UK, with coincident Ka-band and W-band Doppler radar measurements. The collected rain spectra agree with Mie theory predictions: at G-band they show significant reductions in the spectral power return—as compared to theoretical Rayleigh scattering—corresponding to high Doppler velocities (i.e., large raindrops) with the presence of multiple peaks and “Mie notches” in correspondence to the maxima and minima of the raindrop backscattering cross sections. The first two G-band Mie troughs correspond to smaller velocities/sizes than the first W-band Mie notch. These features offered by G-band radars pave the way toward applying, in rain, Mie notch vertical wind retrievals and multifrequency drop size distribution microphysical retrievals to smaller rain rates and smaller characteristic sizes than ever before

    The 2017 Terahertz Science and Technology Roadmap

    Get PDF
    Science and technologies based on terahertz frequency electromagnetic radiation (100GHz-30THz) have developed rapidly over the last 30 years. For most of the 20th century, terahertz radiation, then referred to as sub-millimeter wave or far-infrared radiation, was mainly utilized by astronomers and some spectroscopists. Following the development of laser based terahertz time-domain spectroscopy in the 1980s and 1990s the field of THz science and technology expanded rapidly, to the extent that it now touches many areas from fundamental science to “real world” applications. For example THz radiation is being used to optimize materials for new solar cells, and may also be a key technology for the next generation of airport security scanners. While the field was emerging it was possible to keep track of all new developments, however now the field has grown so much that it is increasingly difficult to follow the diverse range of new discoveries and applications that are appearing. At this point in time, when the field of THz science and technology is moving from an emerging to a more established and interdisciplinary field, it is apt to present a roadmap to help identify the breadth and future directions of the field. The aim of this roadmap is to present a snapshot of the present state of THz science and technology in 2016, and provide an opinion on the challenges and opportunities that the future holds. To be able to achieve this aim, we have invited a group of international experts to write 17 sections that cover most of the key areas of THz Science and Technology. We hope that The 2016 Roadmap on THz Science and Technology will prove to be a useful resource by providing a wide ranging introduction to the capabilities of THz radiation for those outside or just entering the field as well as providing perspective and breadth for those who are well established. We also feel that this review should serve as a useful guide for government and funding agencies

    The 2023 terahertz science and technology roadmap

    Get PDF
    Terahertz (THz) radiation encompasses a wide spectral range within the electromagnetic spectrum that extends from microwaves to the far infrared (100 GHz-∼30 THz). Within its frequency boundaries exist a broad variety of scientific disciplines that have presented, and continue to present, technical challenges to researchers. During the past 50 years, for instance, the demands of the scientific community have substantially evolved and with a need for advanced instrumentation to support radio astronomy, Earth observation, weather forecasting, security imaging, telecommunications, non-destructive device testing and much more. Furthermore, applications have required an emergence of technology from the laboratory environment to production-scale supply and in-the-field deployments ranging from harsh ground-based locations to deep space. In addressing these requirements, the research and development community has advanced related technology and bridged the transition between electronics and photonics that high frequency operation demands. The multidisciplinary nature of THz work was our stimulus for creating the 2017 THz Science and Technology Roadmap (Dhillon et al 2017 J. Phys. D: Appl. Phys. 50 043001). As one might envisage, though, there remains much to explore both scientifically and technically and the field has continued to develop and expand rapidly. It is timely, therefore, to revise our previous roadmap and in this 2023 version we both provide an update on key developments in established technical areas that have important scientific and public benefit, and highlight new and emerging areas that show particular promise. The developments that we describe thus span from fundamental scientific research, such as THz astronomy and the emergent area of THz quantum optics, to highly applied and commercially and societally impactful subjects that include 6G THz communications, medical imaging, and climate monitoring and prediction. Our Roadmap vision draws upon the expertise and perspective of multiple international specialists that together provide an overview of past developments and the likely challenges facing the field of THz science and technology in future decades. The document is written in a form that is accessible to policy makers who wish to gain an overview of the current state of the THz art, and for the non-specialist and curious who wish to understand available technology and challenges. A such, our experts deliver a ‘snapshot’ introduction to the current status of the field and provide suggestions for exciting future technical development directions. Ultimately, we intend the Roadmap to portray the advantages and benefits of the THz domain and to stimulate further exploration of the field in support of scientific research and commercial realisation

    “Working the System”—British American Tobacco's Influence on the European Union Treaty and Its Implications for Policy: An Analysis of Internal Tobacco Industry Documents

    Get PDF
    Katherine Smith and colleagues investigate the ways in which British American Tobacco influenced the European Union Treaty so that new EU policies advance the interests of major corporations, including those that produce products damaging to health

    To eat or not to eat? The diet of the endangered iberian wolf (Canis lupus signatus) in a human- dominated landscape in central Portugal

    Get PDF
    Livestock predation by large carnivores and their persecution by local communities are major conservation concerns. In order to prevent speculations and reduce conflicts, it is crucial to get detailed and accurate data on predators’ dietary ecology, which is particularly important in human dominated landscapes where livestock densities are high. This is the case of the endangered Iberian wolf in Portugal, an endemic subspecies of the Iberian Peninsula, which has seen its population distribution and abundance decline throughout the 20th century. Accordingly, the diet of the Iberian wolf was analyzed, using scat analysis, in a humanized landscape in central Portugal. From 2011 to 2014, a total of 295 wolf scats were collected from transects distributed throughout the study area, prospected on a monthly basis. Scat analysis indicated a high dependence of Iberian wolf on livestock. Domestic goat predominated the diet (62% of the scats), followed by cow (20%) and sheep (13%); the only wild ungulate present in the scat analysis was the wild boar (4% of the scats). Our results show that even though livestock constitute most part of wolves diet, different livestock species may represent different predation opportunities. We conclude that the high levels of livestock consumption may be a result of low diversity and density of wild ungulates that settles livestock as the only abundant prey for wolves. Our findings help on the understanding of the Iberian wolf feeding ecology and have implications for conflict management strategies. Finally, management implications are discussed and solutions are recommended

    The 2023 terahertz science and technology roadmap

    Get PDF
    Terahertz (THz) radiation encompasses a wide spectral range within the electromagnetic spectrum that extends from microwaves to the far infrared (100 GHz–∼30 THz). Within its frequency boundaries exist a broad variety of scientific disciplines that have presented, and continue to present, technical challenges to researchers. During the past 50 years, for instance, the demands of the scientific community have substantially evolved and with a need for advanced instrumentation to support radio astronomy, Earth observation, weather forecasting, security imaging, telecommunications, non-destructive device testing and much more. Furthermore, applications have required an emergence of technology from the laboratory environment to production-scale supply and in-the-field deployments ranging from harsh ground-based locations to deep space. In addressing these requirements, the research and development community has advanced related technology and bridged the transition between electronics and photonics that high frequency operation demands. The multidisciplinary nature of THz work was our stimulus for creating the 2017 THz Science and Technology Roadmap (Dhillon et al 2017 J. Phys. D: Appl. Phys. 50 043001). As one might envisage, though, there remains much to explore both scientifically and technically and the field has continued to develop and expand rapidly. It is timely, therefore, to revise our previous roadmap and in this 2023 version we both provide an update on key developments in established technical areas that have important scientific and public benefit, and highlight new and emerging areas that show particular promise. The developments that we describe thus span from fundamental scientific research, such as THz astronomy and the emergent area of THz quantum optics, to highly applied and commercially and societally impactful subjects that include 6G THz communications, medical imaging, and climate monitoring and prediction. Our Roadmap vision draws upon the expertise and perspective of multiple international specialists that together provide an overview of past developments and the likely challenges facing the field of THz science and technology in future decades. The document is written in a form that is accessible to policy makers who wish to gain an overview of the current state of the THz art, and for the non-specialist and curious who wish to understand available technology and challenges. A such, our experts deliver a 'snapshot' introduction to the current status of the field and provide suggestions for exciting future technical development directions. Ultimately, we intend the Roadmap to portray the advantages and benefits of the THz domain and to stimulate further exploration of the field in support of scientific research and commercial realisation

    Analysis and demonstration of a fast tunable fiber-ring-based optical frequency comb generator

    Get PDF
    Fiber-ring-based optical frequency comb generators are analyzed to understand their behavior and limitations. A numerical frequency-domain model is described for studying dispersion and other phase mismatch causing effects in the fiber ring cavity, as well as for predicting the spectral and temporal evolutions of the comb in time. The results from this analysis are verified with experimental measurements. A flat optical comb, with a terahertz span within a 6-dB power envelope and containing 100 comb lines, with a suppressed central comb line, is demonstrated. The comb shows an excellent coherence dependent on the phase noise from the radio frequency synthesizer that drives the comb generator. Improvement in the error correction loop also enables the comb spacing to be set at precise 12.5-MHz intervals without having to adjust the system. Fast frequency switching of the comb line spacing is demonstrated for the first time. The comb line spacing,can be switched to any operation frequency with a resolution of 12.5 MHz between 6 and 12.5 GHz, as limited only by the microwave circuit used. The switching time is less than 1 s, and the spectral profile of the comb is maintained
    • …
    corecore