509 research outputs found

    Decomposing the misery index: A dynamic approach

    Get PDF
    YesThe misery index (the unweighted sum of unemployment and inflation rates) was probably the first attempt to develop a single statistic to measure the level of a population’s economic malaise. In this letter, we develop a dynamic approach to decompose the misery index using two basic relations of modern macroeconomics: the expectations-augmented Phillips curve and Okun’s law. Our reformulation of the misery index is closer in spirit to Okun’s idea. However, we are able to offer an improved version of the index, mainly based on output and unemployment. Specifically, this new Okun’s index measures the level of economic discomfort as a function of three key factors: (1) the misery index in the previous period; (2) the output gap in growth rate terms; and (3) cyclical unemployment. This dynamic approach differs substantially from the standard one utilised to develop the misery index, and allow us to obtain an index with five main interesting features: (1) it focuses on output, unemployment and inflation; (2) it considers only objective variables; (3) it allows a distinction between short-run and long-run phenomena; (4) it places more importance on output and unemployment rather than inflation; and (5) it weights recessions more than expansions

    Invasion success of a global avian invader is explained by within-taxon niche structure and association with humans in the native range

    Get PDF
    Aim To mitigate the threat invasive species pose to ecosystem functioning, reli- able risk assessment is paramount. Spatially explicit predictions of invasion risk obtained through bioclimatic envelope models calibrated with native species distribution data can play a critical role in invasive species management. Fore- casts of invasion risk to novel environments, however, remain controversial. Here, we assess how species’ association with human-modified habitats in the native range and within-taxon niche structure shape the distribution of invasive populations at biogeographical scales and influence the reliability of predictions of invasion risk. Location Africa, Asia and Europe. Methods We use ~1200 native and invasive ring-necked parakeet (Psittacula krameri) occurrences and associated data on establishment success in combi- nation with mtDNA-based phylogeographic structure to assess niche dynam- ics during biological invasion and to generate predictions of invasion risk. Niche dynamics were quantified in a gridded environmental space while bioclimatic models were created using the biomod2 ensemble modelling framework. Results Ring-necked parakeets show considerable niche expansion into climates colder than their native range. Only when incorporating a measure of human modification of habitats within the native range do bioclimatic envelope mod- els yield credible predictions of invasion risk for parakeets across Europe. Inva- sion risk derived from models that account for differing niche requirements of phylogeographic lineages and those that do not achieve similar statistical accu- racy, but there are pronounced differences in areas predicted to be susceptible for invasion. Main conclusions Information on within-taxon niche structure and especially association with humans in the native range can substantially improve predic- tive models of invasion risk. To provide policymakers with robust predictions of invasion risk, including these factors into bioclimatic envelope models is recommended

    Global Invader Impact Network (GIIN): toward standardized evaluation of the ecological impacts of invasive plants

    Get PDF
    Terrestrial invasive plants are a global problem and are becoming ubiquitous components of most ecosystems. They are implicated in altering disturbance regimes, reducing biodiversity, and changing ecosystem function, sometimes in profound and irreversible ways. However, the ecological impacts of most invasive plants have not been studied experimentally, and most research to date focuses on few types of impacts, which can vary greatly among studies. Thus, our knowledge of existing ecological impacts ascribed to invasive plants is surprisingly limited in both breadth and depth. Our aim was to propose a standard methodology for quantifying baseline ecological impact that, in theory, is scalable to any terrestrial plant invader (e.g., annual grasses to trees) and any invaded system (e.g., grassland to forest). The Global Invader Impact Network (GIIN) is a coordinated distributed experiment composed of an observational and manipulative methodology. The protocol consists of a series of plots located in (1) an invaded area; (2) an adjacent removal treatment within the invaded area; and (3) a spatially separate uninvaded area thought to be similar to pre-invasion conditions of the invaded area. A standardized and inexpensive suite of community, soil, and ecosystem metrics are collected allowing broad comparisons among measurements, populations, and species. The method allows for one-time comparisons and for long-term monitoring enabling one to derive information about change due to invasion over time. Invader removal plots will also allow for quantification of legacy effects and their return rates, which will be monitored for several years. GIIN uses a nested hierarchical scale approach encompassing multiple sites, regions, and continents. Currently, GIIN has network members in six countries, with new members encouraged. To date, study species include representatives of annual and perennial grasses; annual and perennial forbs; shrubs; and trees. The goal of the GIIN framework is to create a standard yet flexible platform for understanding the ecological impacts of invasive plants, allowing both individual and synthetic analyses across a range of taxa and ecosystems. If broadly adopted, this standard approach will offer unique insight into the ecological impacts of invasive plants at local, regional, and global scales.Fil: Barney, Jacob N. Virginia Tech. Department of Plant Pathology, Physiology, and Weed Science; Estados UnidosFil: Tekiela, Daniel R. Virginia Tech. Department of Plant Pathology, Physiology, and Weed Science; Estados UnidosFil: Barrios Garcia Moar, Maria Noelia. Consejo Nacional de Investigaciones Científicas y Técnicas. CENAC-APN; ArgentinaFil: Dimarco, Romina Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas-Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Bariloche. Grupo de Ecología de Poblaciones de Insectos; ArgentinaFil: Hufbauer, Ruth A. Colorado State University. Department of Bioagricultural Sciences and Pest Management and Graduate Degree Program in Ecology; Estados UnidosFil: Leipzig-Scott, Peter. Colorado State University. Department of Bioagricultural Sciences and Pest Management and Graduate Degree Program in Ecology; Estados UnidosFil: Nuñez, Martin A. Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad del Comahue. INIBIOMA. Laboratorio de Ecotono; ArgentinaFil: Pauchard, Anibal. Universidad de Concepción. Facultad de Ciencias Forestales. Laboratorio de Invasiones Biolóogicas; Chile. Institute of Ecology and Biodiversity (IEB); ChileFil: Pysek, Petr. The Czech Academy of Sciences. Institute of Botany. Department of Invasion Ecology; República Checa. Charles University in Prague. Faculty of Science. Department of Ecology; República ChecaFil: Viıtkov, Michaela. The Czech Academy of Sciences. Institute of Botany. Department of Invasion Ecology; República ChecaFil: Maxwell, Bruce D. Montana State University. Department of Land Resources and Environmental Sciences; Estados Unido

    Testing the paradox of enrichment along a land use gradient in a multitrophic aboveground and belowground community

    Get PDF
    In the light of ongoing land use changes, it is important to understand how multitrophic communities perform at different land use intensities. The paradox of enrichment predicts that fertilization leads to destabilization and extinction of predator-prey systems. We tested this prediction for a land use intensity gradient from natural to highly fertilized agricultural ecosystems. We included multiple aboveground and belowground trophic levels and land use-dependent searching efficiencies of insects. To overcome logistic constraints of field experiments, we used a successfully validated simulation model to investigate plant responses to removal of herbivores and their enemies. Consistent with our predictions, instability measured by herbivore-induced plant mortality increased with increasing land use intensity. Simultaneously, the balance between herbivores and natural enemies turned increasingly towards herbivore dominance and natural enemy failure. Under natural conditions, there were more frequently significant effects of belowground herbivores and their natural enemies on plant performance, whereas there were more aboveground effects in agroecosystems. This result was partly due to the “boom-bust” behavior of the shoot herbivore population. Plant responses to herbivore or natural enemy removal were much more abrupt than the imposed smooth land use intensity gradient. This may be due to the presence of multiple trophic levels aboveground and belowground. Our model suggests that destabilization and extinction are more likely to occur in agroecosystems than in natural communities, but the shape of the relationship is nonlinear under the influence of multiple trophic interactions.

    Predicting non-native insect impact: focusing on the trees to see the forest

    Get PDF
    Non-native organisms have invaded novel ecosystems for centuries, yet we have only a limited understanding of why their impacts vary widely from minor to severe. Predicting the impact of non-established or newly detected species could help focus biosecurity measures on species with the highest potential to cause widespread damage. However, predictive models require an understanding of potential drivers of impact and the appropriate level at which these drivers should be evaluated. Here, we used non-native, specialist herbivorous insects of forest ecosystems to test which factors drive impact and if there were differences based on whether they used woody angiosperms or conifers as hosts. We identified convergent and divergent patterns between the two host types indicating fundamental similarities and differences in their interactions with non-native insects. Evolutionary divergence time between native and novel hosts was a significant driver of insect impact for both host types but was modulated by different factors in the two systems. Beetles in the subfamily Scolytinae posed the highest risk to woody angiosperms, and different host traits influenced impact of specialists on conifers and woody angiosperms. Tree wood density was a significant predictor of host impact for woody angiosperms with intermediate densities (0.5–0.6 mg/mm3) associated with highest risk, whereas risk of impact was highest for conifers that coupled shade tolerance with drought intolerance. These results underscore the importance of identifying the relevant levels of biological organization and ecological interactions needed to develop accurate risk models for species that may arrive in novel ecosystems
    corecore