13 research outputs found

    High temporal resolution Br2, BrCl and BrO observations in coastal Antarctica

    Get PDF
    There are few observations of speciated inorganic bromine in polar regions against which to test current theory. Here we report the first high temporal resolution measurements of Br2, BrCl and BrO in coastal Antarctica, made at Halley during spring 2007 using a Chemical Ionisation Mass Spectrometer (CIMS). We find indications for an artefact in daytime BrCl measurements arising from conversion of HOBr, similar to that already identified for observations of Br2 made using a similar CIMS method. Using the MISTRA model, we estimate that the artefact represents a conversion of HOBr to Br2 of the order of several tens of percent, while that for HOBr to BrCl is less but non-negligible. If the artefact is indeed due to HOBr conversion, then nighttime observations were unaffected. It also appears that all daytime BrO observations were artefact-free. Mixing ratios of BrO, Br2 and BrCl ranged from instrumental detection limits to 13 pptv (daytime), 45 pptv (nighttime), and 6 pptv (nighttime), respectively.We see considerable variability in the Br2 and BrCl observations over the measurement period which is strongly linked to the prevailing meteorology, and thus air mass origin. Higher mixing ratios of these species were generally observed when air had passed over the sea-ice zone prior to arrival at Halley, than from over the continent. Variation in the diurnal structure of BrO is linked to previous model work where differences in the photolysis spectra of Br2 and O3 is suggested to lead to a BrO maximum at sunrise and sunset, rather than a noon-time maxima. This suite of Antarctic data provides the first analogue to similar measurements made in the Arctic, and of note is that our maximum measured BrCl (nighttime) is less than half of the maximum measured during a similar period (spring-time) in the Arctic (also nighttime). This difference in maximum measured BrCl may also be the cause of a difference in the Br2 : BrCl ratio between the Arctic and Antarctic. An unusual event of transcontinental air mass transport appears to have been responsible for severe surface ozone depletion observed at Halley over a 2-day period. The halogen source region appears to be the Bellingshausen Sea, to the west of the Antarctic Peninsula, with the air mass having spent 3 1/2 days in complete darkness crossing the continent prior to arrival at Halley

    Observations of hydroxyl and peroxy radicals and the impact of Br0 at Summit, Greenland in 2007 and 2008

    Get PDF
    The Greenland Summit Halogen-HO(x) (GSHOX) Campaign was performed in spring 2007 and summer 2008 to investigate the impact of halogens on HO(x) (= OH+HO(2)) cycling above the Greenland Ice Sheet. Chemical species including hydroxyl and peroxy radicals (OH and HO(2) + RO(2)), ozone (O(3)), nitrogen oxide (NO), nitric acid (HNO(3)), nitrous acid (HONO), reactive gaseous mercury (RGM), and bromine oxide (BrO) were measured during the campaign. The median midday values of HO(2) + RO(2) and OH concentrations observed by chemical ionization mass spectrometry (CIMS) were 2.7x10(8) molec cm(-3) and 3.0x10(6) molec cm(-3) in spring 2007, and 4.2x10(8) molec cm(-3) and 4.1x10(6) molec cm(-3) in summer 2008. A basic photochemical 0-D box model highly constrained by observations of H(2)O, O(3), CO, CH(4), NO, and J values predicted HO(2) + RO(2) (R = 0.90, slope = 0.87 in 2007; R = 0.79, slope = 0.96 in 2008) reasonably well and under predicted OH (R = 0.83, slope = 0.72 in 2007; R = 0.76, slope = 0.54 in 2008). Constraining the model to HONO observations did not significantly improve the ratio of OH to HO(2) + RO(2) and the correlation between predictions and observations. Including bromine chemistry in the model constrained by observations of BrO improved the correlation between observed and predicted HO(2) + RO(2) and OH, and brought the average hourly OH and HO(2) + RO(2) predictions closer to the observations. These model comparisons confirmed our understanding of the dominant HO(x) sources and sinks in this environment and indicated that BrO impacted the OH levels at Summit. Although, significant discrepancies between observed and predicted OH could not be explained by the measured BrO. Finally, observations of enhanced RGM were found to be coincident with under prediction of OH

    Ventilation Requirements for Control of Occupancy Odor and Tobacco Smoke Odor: Laboratory Studies Final Report

    Get PDF
    Experiments on occupancy odor addressed the question of why required ventilation rate per occupant increased progressively with increases in the number of persons in a space. In order to investigate ventilation requirements under approximately ideal conditions, we constructed an aluminum-lined environmental chamber with excellent control over environmental conditions and a ventilation system that provided rapid and uniform mixing of air. Psychophysical experiments on occupancy odor explored 47 different combinations of occupancy density, temperature and humidity, and ventilation rate. The experiments collected judgements both from visitors, who smelled air from the chamber only once every few minutes, and from occupants, who remained in the chamber for an hour at a time. The judgements of visitors revealed that occupancy odor increased only gradually over time and rarely reached very high or objectionable levels. Judgements of occupants also revealed rather minor dissatisfaction. Only during combinations of high temperature and humidity did objectionability become more than a minor issue to either group. Experiments on cigarette smoking explored rates of 4, 8, and 16 cigarettes per hour under various environmental conditions and with ventilation rates as high as 68 cfm (34 L.s/sup -1/) per occupant. As soon as occupants lit cigarettes in the chamber, the odor level increased dramatically. At ventilation rates far greater than necessary to control occupancy odor, the odor from cigarette smoking remained quite intense. In general, the odor proved impossible to control adequately even with a ventilation rate of 68 cfm (34 L.s/sup -1/) per occupant (4 occupants) and even when only one occupant smoked at a time. As in the case of occupancy odor, a combination of high temperature and humidity exacerbated the odor problem

    An assessment of the polar HOx photochemical budget based on 2003 Summit Greenland field observations

    No full text
    An interpretative modeling analysis is conducted to simulate the diurnal variations in OH and HO2 + RO2 observed at Summit, Greenland in 2003. The main goal is to assess the HOx budget and to quantify the impact of snow emissions on ambient HOx as well as on CH2O and H2O2. This analysis is based on composite diurnal profiles of HOx precursors recorded during a 3-day period (July 7-9), which were generally compatible with values reported in earlier studies. The model simulations can reproduce the observed diurnal variation in HO2 + RO2 when they are constrained by observations of H2O2 and CH2O. By contrast, model predictions of OH were about factor of 2 higher than the observed values. Modeling analysis of H2O2 suggests that its distinct diurnal variation is likely controlled by snow emissions and loss by deposition and/or scavenging. Similarly, deposition and/or scavenging sinks are needed to reproduce the observed diel profile in CH2O. This study suggests that for the Summit 2003 period snow emissions contribute similar to 25% of the total CH2O production, while photochemical oxidation of hydrocarbon appears to be the dominant source. A budget assessment of HOx radicals shows that primary production from O(D-1) + H2O and photolysis of snow emitted precursors (i.e., H2O2 and CH2O)are the largest primary HOx sources at Summit, contributing 41% and 40%, respectively. The snow contribution to the HOx budget is mostly in the form of emissions of H2O2. The dominant HO, sink involves the HO2 + HO2 reaction forming H2O2, followed by its deposition to snow. These results differ from those previously reported for the South Pole (SP), in that primary production of HOx was shown to be largely driven by both the photolysis of CH2O and H2O2 emissions (46%) with smaller contributions coming from the oxidation of CH4 and the 0(D-1) + H2O reaction (i.e., 27% each). In sharp contrast to the findings at Summit in 2003, due to the much higher levels of NOx the SP HO, sinks are dominated by HOx-NOx reactions, leading to the formation and deposition of HNO3 and HO2NO2. Thus, a comparison between SP and Summit studies suggests that snow emissions appear to play a prominent role in controlling primary HOx production in both environments. However, as regards to maintaining highly elevated levels of OH, the two environments differ substantially. At Summit the elevated rate for primary production of HOx is most important; whereas, at SP it is the rapid recycling of the more prevalent HO2 radical, through reaction with NO, back to OH that is primarily responsible
    corecore