2,294 research outputs found

    Inherited Arrhythmia Syndromes Exome Sequencing Opens a New Door to Diagnosis∗

    Get PDF

    New approaches to predicting the risk of sudden death.

    Get PDF
    In this review article, we will explore some of the contemporary methods for predicting sudden cardiac death (SCD). These include experimental methods yet to be adopted in the clinical setting, and methods that have been extrapolated from observational data in those with a history of SCD. We will discuss how these relate to the different aetiologies and disease processes. We will also explore how these may be used in the clinical setting to decide on management

    A Systems Genetics Approach Implicates USF1, FADS3, and Other Causal Candidate Genes for Familial Combined Hyperlipidemia

    Get PDF
    We hypothesized that a common SNP in the 3' untranslated region of the upstream transcription factor 1 (USF1), rs3737787, may affect lipid traits by influencing gene expression levels, and we investigated this possibility utilizing the Mexican population, which has a high predisposition to dyslipidemia. We first associated rs3737787 genotypes in Mexican Familial Combined Hyperlipidemia (FCHL) case/control fat biopsies, with global expression patterns. To identify sets of co-expressed genes co-regulated by similar factors such as transcription factors, genetic variants, or environmental effects, we utilized weighted gene co-expression network analysis (WGCNA). Through WGCNA in the Mexican FCHL fat biopsies we identified two significant Triglyceride (TG)-associated co-expression modules. One of these modules was also associated with FCHL, the other FCHL component traits, and rs3737787 genotypes. This USF1-regulated FCHL-associated (URFA) module was enriched for genes involved in lipid metabolic processes. Using systems genetics procedures we identified 18 causal candidate genes in the URFA module. The FCHL causal candidate gene fatty acid desaturase 3 (FADS3) was associated with TGs in a recent Caucasian genome-wide significant association study and we replicated this association in Mexican FCHL families. Based on a USF1-regulated FCHL-associated co-expression module and SNP rs3737787, we identify a set of causal candidate genes for FCHL-related traits. We then provide evidence from two independent datasets supporting FADS3 as a causal gene for FCHL and elevated TGs in Mexicans

    A nonsynonymous SNP within PCDH15 is associated with lipid traits in familial combined hyperlipidemia

    Get PDF
    Familial combined hyperlipidemia (FCHL) is a common lipid disorder characterized by the presence of multiple lipoprotein phenotypes that increase the risk of premature coronary heart disease. In a previous study, we identified an intragenic microsatellite marker within the protocadherin 15 (PCDH15) gene to be associated with high triglycerides (TGs) in Finnish dyslipidemic families. In this study we analyzed all four known nonsynonymous SNPs within PCDH15 in 1,268 individuals from Finnish and Dutch multigenerational families with FCHL. Association analyses of quantitative traits for SNPs were performed using the QTDT test. The nonsynonymous SNP rs10825269 resulted in a P = 0.0006 for the quantitative TG trait. Additional evidence for association was observed with the same SNP for apolipoprotein B levels (apo-B) (P = 0.0001) and total cholesterol (TC) levels (P = 0.001). None of the other three SNPs tested showed a significant association with any lipid-related trait. We investigated the expression of PCDH15 in different human tissues and observed that PCDH15 is expressed in several tissues including liver and pancreas. In addition, we measured the plasma lipid levels in mice with loss-of-function mutations in Pcdh15 (Pcdh15av-Tg and Pcdh15av-3J) to investigate possible abnormalities in their lipid profile. We observed a significant difference in plasma TG and TC concentrations for the Pcdh15av-3J carriers when compared with the wild type (P = 0.013 and P = 0.044, respectively). Our study suggests that PCDH15 is associated with lipid abnormalities

    Body Mass Index is Associated with USF1 Haplotype in Korean Premenopausal Women

    Get PDF
    The upstream stimulatory factor 1 (USF1) gene has been shown to play an essential role as the cause of familial combined hyperlipidemia, and there are several association studies on the relationship between USF1 and metabolic disorders. In this study, we analyzed two single nucleotide polymorphisms in USF1 rs2073653 (306A>G) and rs2516840 (1748C>T) between the case (dyslipidemia or obesity) group and the control group in premenopausal females, postmenopausal females, and males among 275 Korean subjects. We observed a statistically significant difference in the GC haplotype between body mass index (BMI) ≥25 kg/m2 and BMI <25 kg/m2 groups in premenopausal females (χ2=4.23, p=0.04). It seems that the USF1 GC haplotype is associated with BMI in premenopausal Korean females

    Adipose Co-expression networks across Finns and Mexicans identify novel triglyceride-associated genes

    Get PDF
    BACKGROUND: High serum triglyceride (TG) levels is an established risk factor for coronary heart disease (CHD). Fat is stored in the form of TGs in human adipose tissue. We hypothesized that gene co-expression networks in human adipose tissue may be correlated with serum TG levels and help reveal novel genes involved in TG regulation. METHODS: Gene co-expression networks were constructed from two Finnish and one Mexican study sample using the blockwiseModules R function in Weighted Gene Co-expression Network Analysis (WGCNA). Overlap between TG-associated networks from each of the three study samples were calculated using a Fisher’s Exact test. Gene ontology was used to determine known pathways enriched in each TG-associated network. RESULTS: We measured gene expression in adipose samples from two Finnish and one Mexican study sample. In each study sample, we observed a gene co-expression network that was significantly associated with serum TG levels. The TG modules observed in Finns and Mexicans significantly overlapped and shared 34 genes. Seven of the 34 genes (ARHGAP30, CCR1, CXCL16, FERMT3, HCST, RNASET2, SELPG) were identified as the key hub genes of all three TG modules. Furthermore, two of the 34 genes (ARHGAP9, LST1) reside in previous TG GWAS regions, suggesting them as the regional candidates underlying the GWAS signals. CONCLUSIONS: This study presents a novel adipose gene co-expression network with 34 genes significantly correlated with serum TG across populations

    High anthropogenic carbon content in the eastern Mediterranean

    Get PDF
    This work presents data of dichlorodifluoromethane (CFC-12), dissolved inorganic carbon and total alkalinity from a cruise to the Mediterranean Sea during October–November 2001, with the main focus on the CFC-12 data and on the eastern basin. Using the transit time distribution method, the anthropogenic carbon concentrations in the basin were estimated. Results were cross-checked with a back-calculation technique. The entire water column of the Mediterranean Sea contains anthropogenic CO2, with minimum concentrations of 20.5 μmol kg−1 (error range: 16.9–27.1 μmol kg−1) in the most eastern part of the basin at intermediate depths, where the waters' mean age is >130 yr. Column inventories of up to 154 mol m−2 (132–179 mol m−2) are found and a total inventory of 1.7 Pg (1.3–2.1 Pg) of anthropogenic carbon in the Mediterranean Sea was estimated. There is a net flux of 38 Tg yr−1 (30–47 Tg yr−1) of dissolved inorganic carbon through the Strait of Gibraltar into the Atlantic Ocean and an opposite net flux of 3.5 Tg yr−1 (−1.8–9.2 Tg yr−1) of anthropogenic carbon into the Mediterranean Sea
    corecore