858 research outputs found

    The Tree versus the Forest: The Fungal Tree of Life and the Topological Diversity within the Yeast Phylome

    Get PDF
    A recurrent topic in phylogenomics is the combination of various sequence alignments to reconstruct a tree that describes the evolutionary relationships within a group of species. However, such approach has been criticized for not being able to properly represent the topological diversity found among gene trees. To evaluate the representativeness of species trees based on concatenated alignments, we reconstruct several fungal species trees and compare them with the complete collection of phylogenies of genes encoded in the Saccharomyces cerevisiae genome. We found that, despite high levels of among-gene topological variation, the species trees do represent widely supported phylogenetic relationships. Most topological discrepancies between gene and species trees are concentrated in certain conflicting nodes. We propose to map such information on the species tree so that it accounts for the levels of congruence across the genome. We identified the lack of sufficient accuracy of current alignment and phylogenetic methods as an important source for the topological diversity encountered among gene trees. Finally, we discuss the implications of the high levels of topological variation for phylogeny-based orthology prediction strategies

    Light-Induced Fos Expression in Intrinsically Photosensitive Retinal Ganglion Cells in Melanopsin Knockout (Opn4−/−) Mice

    Get PDF
    Retinal ganglion cells that express the photopigment melanopsin are intrinsically photosensitive (ipRGCs) and exhibit robust synaptically driven ON-responses to light, yet they will continue to depolarize in response to light when all synaptic input from rod and cone photoreceptors is removed. The light-evoked increase in firing of classical ganglion cells is determined by synaptic input from ON-bipolar cells in the proximal sublamina of the inner plexiform layer. OFF-bipolar cells synapse with ganglion cell dendrites in the distal sublamina of the inner plexiform layer. Of the several types of ipRGC that have been described, M1 ipRGCs send dendrites exclusively into the OFF region of the inner plexiform layer where they stratify near the border of the inner nuclear layer. We tested whether M1 ipRGCs with dendrites restricted to the OFF sublamina of the inner plexiform layer receive synaptic ON-bipolar input by examining light-induced gene expression in vivo using melanopsin knockout mice. Mice in which both copies of the melanopsin gene (opn4) have been replaced with the tau-lacZ gene (homozygous tau-lacZ+/+ knockin mice) are melanopsin knockouts (opn4−/−) but M1 ipRGCs are specifically identified by their expression of ÎČ-galactosidase. Approximately 60% of M1 ipRGCs in Opn4−/− mice exposed to 3 hrs of light expressed c-Fos; no ÎČ-galactosidase-positive RGCs expressed c-Fos in the dark. Intraocular application of L-AP4, a compound which blocks transmission of visual signals between photoreceptors and ON-bipolar cells significantly reduced light-evoked c-Fos expression in M1 ipRGCs compared to saline injected eyes (66% saline vs 27% L-AP4). The results are the first description of a light-evoked response in an ipRGC lacking melanopsin and provide in vivo confirmation of previous in vitro observations illustrating an unusual circuit in the retina in which ganglion cells sending dendrites to the OFF sublamina of the inner plexiform layer receive excitatory synaptic input from ON-bipolar cells

    Adjunctive raloxifene treatment improves attention and memory in men and women with schizophrenia

    Get PDF
    There is increasing clinical and molecular evidence for the role of hormones and specifically estrogen and its receptor in schizophrenia. A selective estrogen receptor modulator, raloxifene, stimulates estrogen-like activity in brain and can improve cognition in older adults. The present study tested the extent to which adjunctive raloxifene treatment improved cognition and reduced symptoms in young to middle-age men and women with schizophrenia. Ninety-eight patients with a diagnosis of schizophrenia or schizoaffective disorder were recruited into a dual-site, thirteen-week, randomized, double-blind, placebocontrolled, crossover trial of adjunctive raloxifene treatment in addition to their usual antipsychotic medications. Symptom severity and cognition in the domains of working memory, attention/processing speed, language and verbal memory were assessed at baseline, 6 and 13 weeks. Analyses of the initial 6-week phase of the study using a parallel groups design (with 39 patients receiving placebo and 40 receiving raloxifene) revealed that participants receiving adjunctive raloxifene treatment showed significant improvement relative to placebo in memory and attention/processing speed. There was no reduction in symptom severity with treatment compared with placebo. There were significant carryover effects, suggesting some cognitive benefits are sustained even after raloxifene withdrawal. Analysis of the 13-week crossover data revealed significant improvement with raloxifene only in attention/processing speed. This is the first study to show that daily, oral adjunctive raloxifene treatment at 120 mg per day has beneficial effects on attention/processing speed and memory for both men and women with schizophrenia. Thus, raloxifene may be useful as an adjunctive treatment for cognitive deficits associated with schizophrenia.TW Weickert, D Weinberg, R Lenroot, SV Catts, R Wells, A Vercammen, M O, Donnell, C Galletly, D Liu, R Balzan, B Short, D Pellen, J Curtis, VJ Carr, J Kulkarni, PR Schofield and CS Weicker

    First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data

    Get PDF
    Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a fully coherent search, based on matched filtering, which uses the position and rotational parameters obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signalto- noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch between the assumed and the true signal parameters. For this reason, narrow-band analysis methods have been developed, allowing a fully coherent search for gravitational waves from known pulsars over a fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of 11 pulsars using data from Advanced LIGO’s first observing run. Although we have found several initial outliers, further studies show no significant evidence for the presence of a gravitational wave signal. Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of the 11 targets over the bands searched; in the case of J1813-1749 the spin-down limit has been beaten for the first time. For an additional 3 targets, the median upper limit across the search bands is below the spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried out so far

    Autonomous Irrigation Management in Decision Agriculture

    Get PDF
    In this chapter, the important application of autonomous irrigation management in the field decision agriculture is discussed. The different types of sensor-guided irrigation systems are presented that includes center pivot systems and drip irrigation systems. Their sensing and actuator components are with detailed focus on real-time decision-making and integration to the cloud. This chapter also presents irrigation control systems which takes, as an input, soil moisture and temperature from IOUT and weather data from Internet and communicate with center pivot based irrigation systems. Moreover, the system architecture is explored where development of the nodes including sensing and actuators is presented. Finally, the chapter concludes with comprehensive discussion of adaptive control systems, software, and visualization system design

    Childhood asthma outcomes during the COVID-19 pandemic: Findings from the PeARL multi-national cohort.

    Get PDF
    BACKGROUND: The interplay between COVID-19 pandemic and asthma in children is still unclear. We evaluated the impact of COVID-19 pandemic on childhood asthma outcomes. METHODS: The PeARL multinational cohort included 1,054 children with asthma and 505 non-asthmatic children aged between 4-18 years from 25 pediatric departments, from 15 countries globally. We compared the frequency of acute respiratory and febrile presentations during the first wave of the COVID-19 pandemic between groups and with data available from the previous year. In children with asthma, we also compared current and historical disease control. RESULTS: During the pandemic, children with asthma experienced fewer upper respiratory tract infections, episodes of pyrexia, emergency visits, hospital admissions, asthma attacks and hospitalizations due to asthma, in comparison to the preceding year. Sixty-six percent of asthmatic children had improved asthma control while in 33% the improvement exceeded the minimal clinically important difference. Pre-bronchodilatation FEV1 and peak expiratory flow rate were improved during the pandemic. When compared to non-asthmatic controls, children with asthma were not at increased risk of LRTIs, episodes of pyrexia, emergency visits or hospitalizations during the pandemic. However, an increased risk of URTIs emerged. CONCLUSION: Childhood asthma outcomes, including control, were improved during the first wave of the COVID-19 pandemic, probably because of reduced exposure to asthma triggers and increased treatment adherence. The decreased frequency of acute episodes does not support the notion that childhood asthma may be a risk factor for COVID-19. Furthermore, the potential for improving childhood asthma outcomes through environmental control becomes apparent

    Reference Genes for Accurate Transcript Normalization in Citrus Genotypes under Different Experimental Conditions

    Get PDF
    Real-time reverse transcription PCR (RT-qPCR) has emerged as an accurate and widely used technique for expression profiling of selected genes. However, obtaining reliable measurements depends on the selection of appropriate reference genes for gene expression normalization. The aim of this work was to assess the expression stability of 15 candidate genes to determine which set of reference genes is best suited for transcript normalization in citrus in different tissues and organs and leaves challenged with five pathogens (Alternaria alternata, Phytophthora parasitica, Xylella fastidiosa and Candidatus Liberibacter asiaticus). We tested traditional genes used for transcript normalization in citrus and orthologs of Arabidopsis thaliana genes described as superior reference genes based on transcriptome data. geNorm and NormFinder algorithms were used to find the best reference genes to normalize all samples and conditions tested. Additionally, each biotic stress was individually analyzed by geNorm. In general, FBOX (encoding a member of the F-box family) and GAPC2 (GAPDH) was the most stable candidate gene set assessed under the different conditions and subsets tested, while CYP (cyclophilin), TUB (tubulin) and CtP (cathepsin) were the least stably expressed genes found. Validation of the best suitable reference genes for normalizing the expression level of the WRKY70 transcription factor in leaves infected with Candidatus Liberibacter asiaticus showed that arbitrary use of reference genes without previous testing could lead to misinterpretation of data. Our results revealed FBOX, SAND (a SAND family protein), GAPC2 and UPL7 (ubiquitin protein ligase 7) to be superior reference genes, and we recommend their use in studies of gene expression in citrus species and relatives. This work constitutes the first systematic analysis for the selection of superior reference genes for transcript normalization in different citrus organs and under biotic stress

    Inhibition of metastasis, angiogenesis, and tumor growth by Chinese herbal cocktail Tien-Hsien Liquid

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Advanced cancer is a multifactorial disease that demands treatments targeting multiple cellular pathways. Chinese herbal cocktail which contains various phytochemicals may target multiple dys-regulated pathways in cancer cells and thus may provide an alternative/complementary way to treat cancers. Previously we reported that the Chinese herbal cocktail Tien-Hsien Liguid (THL) can specifically induce apoptosis in various cancer cells and have immuno-modulating activity. In this study, we further evaluated the anti-metastatic, anti-angiogenic and anti-tumor activities of THL with a series of <it>in vitro </it>and <it>in vivo </it>experiments.</p> <p>Methods</p> <p>The migration and invasion of cancer cells and endothelial cells was determined by Boyden chamber transwell assays. The effect of THL on pulmonary metastasis was done by injecting CT-26 colon cancer cells intravenously to syngenic mice. The <it>in vitro </it>and <it>in vivo </it>microvessel formation was determined by the tube formation assay and the Matrigel plug assay, respectively. The <it>in vivo </it>anti-tumor effect of THL was determined by a human MDA-MB-231 breast cancer xenograft model. The expression of metalloproteinase (MMP)-2, MMP-9, and urokinase plasminogen activator (uPA) was measured by gelatin zymography. The expression of HIF-1α and the phosphorylation of ERK1/2 were determined by Western blot.</p> <p>Results</p> <p>THL inhibited the migration and invasion ability of various cancer cells <it>in vitro</it>, decreased the secretion of MMP-2, MMP-9, and uPA and the activity of ERK1/2 in cancer cells, and suppressed pulmonary metastasis of CT-26 cancer cells in syngenic mice. Moreover, THL inhibited the migration, invasion, and tube formation of endothelial cells <it>in vitro</it>, decreased the secretion of MMP-2 and uPA in endothelial cells, and suppressed neovascularization in Matrigel plugs in mice. Besides its inhibitory effect on endothelial cells, THL inhibited hypoxia-induced HIF-1α and vascular endothelial growth factor-A expression in cancer cells. Finally, our results show that THL inhibited the growth of human MDA-MB-231 breast cancer xenografts in <it>NOD-SCID </it>mice. This suppression of tumor growth was associated with decreased microvessel formation and increased apoptosis caused by THL.</p> <p>Conclusion</p> <p>Our data demonstrate that THL had broad-spectra anti-cancer activities and merits further evaluation for its use in cancer therapy.</p

    Actin binding to WH2 domains regulates nuclear import of the multifunctional actin regulator JMY

    Get PDF
    © The Author(s), 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Molecular Biology of the Cell 23 (2012): 853-863, doi:10.1091/mbc.E11-12-0992.Junction-mediating and regulatory protein (JMY) is a regulator of both transcription and actin filament assembly. In response to DNA damage, JMY accumulates in the nucleus and promotes p53-dependent apoptosis. JMY's actin-regulatory activity relies on a cluster of three actin-binding Wiskott–Aldrich syndrome protein homology 2 (WH2) domains that nucleate filaments directly and also promote nucleation activity of the Arp2/3 complex. In addition to these activities, we find that the WH2 cluster overlaps an atypical, bipartite nuclear localization sequence (NLS) and controls JMY's subcellular localization. Actin monomers bound to the WH2 domains block binding of importins to the NLS and prevent nuclear import of JMY. Mutations that impair actin binding, or cellular perturbations that induce actin filament assembly and decrease the concentration of monomeric actin in the cytoplasm, cause JMY to accumulate in the nucleus. DNA damage induces both cytoplasmic actin polymerization and nuclear import of JMY, and we find that damage-induced nuclear localization of JMY requires both the WH2/NLS region and importin ÎČ. On the basis of our results, we propose that actin assembly regulates nuclear import of JMY in response to DNA damage.This work was supported by grants from the National Institutes of Health, an American Heart Association Predoctoral Fellowship (J.B.Z.), the Robert Day Allen Fellowship Fund (J.B.Z.), and a National Science Foundation Predoctoral Fellowship (B.B.)

    Enhancing methane production from lignocellulosic biomass by combined steam‑explosion pretreatment and bioaugmentation with cellulolytic bacterium Caldicellulosiruptor bescii

    Get PDF
    Background: Biogas production from lignocellulosic biomass is generally considered to be challenging due to the recalcitrant nature of this biomass. In this study, the recalcitrance of birch was reduced by applying steam-explosion (SE) pretreatment (210 °C and 10 min). Moreover, bioaugmentation with the cellulolytic bacterium Caldicellulosiruptor bescii was applied to possibly enhance the methane production from steam-exploded birch in an anaerobic digestion (AD) process under thermophilic conditions (62 °C). Results: Overall, the combined SE and bioaugmentation enhanced the methane yield up to 140% compared to untreated birch, while SE alone contributed to the major share of methane enhancement by 118%. The best methane improvement of 140% on day 50 was observed in bottles fed with pretreated birch and bioaugmentation with lower dosages of C. bescii (2 and 5% of inoculum volume). The maximum methane production rate also increased from 4-mL CH4/ g VS (volatile solids)/day for untreated birch to 9-14-mL CH4/ g VS/day for steam-exploded birch with applied bioaugmentation. Bioaugmentation was particularly effective for increasing the initial methane production rate of the pretreated birch yielding 21-44% more methane than the pretreated birch without applied bioaugmentation. The extent of solubilization of the organic matter was increased by more than twofold when combined SE pretreatment and bioaugmentation was used in comparison with the methane production from untreated birch. The beneficial effects of SE and bioaugmentation on methane yield indicated that biomass recalcitrance and hydrolysis step are the limiting factors for efficient AD of lignocellulosic biomass. Microbial community analysis by 16S rRNA amplicon sequencing showed that the microbial community composition was altered by the pretreatment and bioaugmentation processes. Notably, the enhanced methane production by pretreatment and bioaugmentation was well correlated with the increase in abundance of key bacterial and archaeal communities, particularly the hydrolytic bacterium Caldicoprobacter, several members of syntrophic acetate oxidizing bacteria and the hydrogenotrophic Methanothermobacter. Conclusion: Our findings demonstrate the potential of combined SE and bioaugmentation for enhancing methane production from lignocellulosic biomass
    • 

    corecore