606 research outputs found
Converting rain into drinking water: Quality issues and technological advances
With growing pressures on water supplies worldwide, rainwater harvesting is increasingly seen as a viable option to provide drinking water to an ever expanding population, particularly in developing countries. However, rooftop runoff is not without quality issues. Microbiological and chemical contamination have been detected in several studies, well above local and international guidelines, posing a health risk for consumers. Our research explores the use of silver ions, combined with conventional filtration and settling mechanisms, as a safe and affordable model for purification that can be applied on a small scale. The complete systems were installed and tested in rural communities in a Mexican semi-arid region. Efficiencies up to 99.9% were achieved in the removal of indicator microorganisms, with a marked exception where cross-contamination from external seepage occurs. Sites without overhanging branches or with relatively clean surfaces show an absence of total coliforms in the untreated runoff, compared with others where values as high as 1,650 CFU/100 ml were recorded. Thus, given adequate maintenance, the system can successfully deliver high quality drinking water, even when storage is required for long periods of time. © IWA Publishing 2011
Evaluation of a silver-ion based purification system for rainwater harvesting at a small-scale community level
Silver has been known for centuries to be a powerful disinfectant, with no known harmful effects to humans if applied in adequate doses. Although its use was partially discontinued with the advent of chlorination and modern antibiotics, the discovery of bacterial resistance and disinfection by-products has enabled its re-emergence as a viable water purification option. On the other hand, implementation in small-scale rainwater harvesting (RWH) systems has received little attention, possibly due to a general perception that it is a complex and/or expensive technology. This can be overcome by efficient designs that dose silver ions into the water at a minimal cost. The authors evaluated a dozen RWH systems equipped with silver releasing devices, which have been providing drinking water to schools and clinics in a rural area of Mexico. This paper represents a follow-up to a previously published study on an evaluation performed in the same region. A number of water quality parameters have been analysed, examining the long-term efficiency of the projects. Our observations show that the silver ion devices act as an effective disinfection mechanism, as long as adequate maintenance is provided. The combination with conventional settling tanks and filtration units seems to greatly enhance the overall performance of the system
Engineering of quantum dot photon sources via electro-elastic fields
The possibility to generate and manipulate non-classical light using the
tools of mature semiconductor technology carries great promise for the
implementation of quantum communication science. This is indeed one of the main
driving forces behind ongoing research on the study of semiconductor quantum
dots. Often referred to as artificial atoms, quantum dots can generate single
and entangled photons on demand and, unlike their natural counterpart, can be
easily integrated into well-established optoelectronic devices. However, the
inherent random nature of the quantum dot growth processes results in a lack of
control of their emission properties. This represents a major roadblock towards
the exploitation of these quantum emitters in the foreseen applications. This
chapter describes a novel class of quantum dot devices that uses the combined
action of strain and electric fields to reshape the emission properties of
single quantum dots. The resulting electro-elastic fields allow for control of
emission and binding energies, charge states, and energy level splittings and
are suitable to correct for the quantum dot structural asymmetries that usually
prevent these semiconductor nanostructures from emitting polarization-entangled
photons. Key experiments in this field are presented and future directions are
discussed.Comment: to appear as a book chapter in a compilation "Engineering the
Atom-Photon Interaction" published by Springer in 2015, edited by A.
Predojevic and M. W. Mitchel
Recent Advances in Our Understanding of the Role of Meltwater in the Greenland Ice Sheet System
Nienow, Sole and Cowton’s Greenland research has been supported by a number of UK NERC research grants (NER/O/S/2003/00620; NE/F021399/1; NE/H024964/1; NE/K015249/1; NE/K014609/1) and Slater has been supported by a NERC PhD studentshipPurpose of the review: This review discusses the role that meltwater plays within the Greenland ice sheet system. The ice sheet’s hydrology is important because it affects mass balance through its impact on meltwater runoff processes and ice dynamics. The review considers recent advances in our understanding of the storage and routing of water through the supraglacial, englacial, and subglacial components of the system and their implications for the ice sheet Recent findings: There have been dramatic increases in surface meltwater generation and runoff since the early 1990s, both due to increased air temperatures and decreasing surface albedo. Processes in the subglacial drainage system have similarities to valley glaciers and in a warming climate, the efficiency of meltwater routing to the ice sheet margin is likely to increase. The behaviour of the subglacial drainage system appears to limit the impact of increased surface melt on annual rates of ice motion, in sections of the ice sheet that terminate on land, while the large volumes of meltwater routed subglacially deliver significant volumes of sediment and nutrients to downstream ecosystems. Summary: Considerable advances have been made recently in our understanding of Greenland ice sheet hydrology and its wider influences. Nevertheless, critical gaps persist both in our understanding of hydrology-dynamics coupling, notably at tidewater glaciers, and in runoff processes which ensure that projecting Greenland’s future mass balance remains challenging.Publisher PDFPeer reviewe
A synthesis of past, current and future research for protection and management of papyrus (Cyperus papyrus L.) wetlands in Africa
Papyrus wetlands (dominated by the giant
sedge Cyperus papyrus L.) occur throughout eastern,
central and southern Africa and are important for
biodiversity, for water quality and quantity regulation
and for the livelihoods of millions of people. To draw
attention to the importance of papyrus wetlands, a
special session entitled ‘‘The ecology of livelihoods in
papyrus wetlands’’ was organized at the 9th INTECOL
Wetlands Conference in Orlando, Florida in June
2012. Papers from the session, combined with additional
contributions, were collected in a special issue
of Wetlands Ecology and Management. The current
paper reviews ecological and hydrological characteristics
of papyrus wetlands, summarizes their ecosystem
services and sustainable use, provides an
overview of papyrus research to date, and looks at
policy development for papyrus wetlands. Based on
this review, the paper provides a synthesis of research
and policy priorities for papyrus wetlands and introduces
the contributions in the special issue. Main
conclusions are that (1) there is a need for better
estimates of the area covered by papyrus wetlands.
Limited evidence suggests that the loss of papyrus
wetlands is rapid in some areas; (2) there is a need for a
better understanding and modelling of the regulating
services of papyrus wetlands to support trade-off
analysis and improve economic valuation; (3) research
on papyrus wetlands should include assessment of all
ecosystem services (provisioning, regulating, habitat,
cultural) so that trade-offs can be determined as the
basis for sustainable management strategies (‘wise
use’); (4) more research on the governance, institutional
and socio-economic aspects of papyrus wetlands
is needed to assist African governments in
dealing with the challenges of conserving wetlands in
the face of growing food security needs and climate
change. The papers in the special issue address a
number of these issues
Characterization of the cork oak transcriptome dynamics during acorn development
Background: Cork oak (Quercus suber L.) has a natural distribution across western Mediterranean regions and is a keystone forest tree species in these ecosystems. The fruiting phase is especially critical for its regeneration but the molecular mechanisms underlying the biochemical and physiological changes during cork oak acorn development are poorly understood. In this study, the transcriptome of the cork oak acorn, including the seed, was characterized in five stages of development, from early development to acorn maturation, to identify the dominant processes in each stage and reveal transcripts with important functions in gene expression regulation and response to water.
Results: A total of 80,357 expressed sequence tags (ESTs) were de novo assembled from RNA-Seq libraries representative of the several acorn developmental stages. Approximately 7.6 % of the total number of transcripts present in Q. suber transcriptome was identified as acorn specific. The analysis of expression profiles during development returned 2,285 differentially expressed (DE) transcripts, which were clustered into six groups. The stage of development corresponding to the mature acorn exhibited an expression profile markedly different from other stages. Approximately 22 % of the DE transcripts putatively code for transcription factors (TF) or transcriptional regulators, and were found almost equally distributed among the several expression profile clusters, highlighting their major roles in controlling the whole developmental process. On the other hand, carbohydrate metabolism, the biological pathway most represented during acorn development, was especially prevalent in mid to late stages as evidenced by enrichment analysis. We further show that genes related to response to water, water deprivation and transport were mostly represented during the early (S2) and the last stage (S8) of acorn development, when tolerance to water desiccation is possibly critical for acorn viability.
Conclusions: To our knowledge this work represents the first report of acorn development transcriptomics in oaks. The obtained results provide novel insights into the developmental biology of cork oak acorns, highlighting transcripts putatively involved in the regulation of the gene expression program and in specific processes likely essential for adaptation. It is expected that this knowledge can be transferred to other oak species of great ecological value.Fundação para a Ciência e a Tecnologi
Ecological commonalities among pelagic fishes: comparison of freshwater ciscoes and marine herring and sprat
Systematic comparisons of the ecology between functionally similar fish species from freshwater and marine aquatic systems are surprisingly rare. Here, we discuss commonalities and differences in evolutionary history, population genetics, reproduction and life history, ecological interactions, behavioural ecology and physiological ecology of temperate and Arctic freshwater coregonids (vendace and ciscoes, Coregonus spp.) and marine clupeids (herring, Clupea harengus, and sprat, Sprattus sprattus). We further elucidate potential effects of climate warming on these groups of fish based on the ecological features of coregonids and clupeids documented in the previous parts of the review. These freshwater and marine fishes share a surprisingly high number of similarities. Both groups are relatively short-lived, pelagic planktivorous fishes. The genetic differentiation of local populations is weak and seems to be in part correlated to an astonishing variability of spawning times. The discrete thermal window of each species influences habitat use, diel vertical migrations and supposedly also life history variations. Complex life cycles and preference for cool or cold water make all species vulnerable to the effects of global warming. It is suggested that future research on the functional interdependence between spawning time, life history characteristics, thermal windows and genetic differentiation may profit from a systematic comparison of the patterns found in either coregonids or clupeids
Microvertebrates preserved in mammal burrows from the Holocene of the Argentine Pampas: a taphonomic and paleoecological approach
Microvertebrates are a major component of many assemblages recovered from the Quaternary of the Argentine Pampas. The main goal of this paper is to analyse the taphonomic history of a Holocene microfossil bonebed, recovered from the infilling of a burrow. Evidences suggest the plains vizcacha Lagostomus maximus as the putative producer of the burrow. The assemblage includes individuals belonging to different taxa of mammals (marsupials and rodents) and reptiles (snakes). Taphonomic features suggest that the accumulation inside the burrow was related to flooding processes in the plain. The burrow was a natural trap that favoured the accumulation and preservation of remains corresponding to individuals from different sources. According to the taphonomic evidence, some individuals (Lagostomus maximus, Lestodelphys halli and Serpentes indet.) died inside the burrow, whereas others (Microcavia australis, Reithrodon auritus and Ctenomys sp.) died outside the burrow, and after a time of being exposed on the surface their remains were transported by surface run-offs into the burrow. The record of Lestodelphys halli and Serpentes indet. in the burrow produced by Lagostomus maximus could be related to a circumstantial use. Mammal burrows are a significant taphonomic mode for the late Cenozoic of the Argentine Pampas
Recommended from our members
2D versus 3D human induced pluripotent stem cell-derived cultures for neurodegenerative disease modelling
Neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and amyotrophic lateral sclerosis (ALS), affect millions of people every year and so far, there are no therapeutic cures available. Even though animal and histological models have been of great aid in understanding disease mechanisms and identifying possible therapeutic strategies, in order to find disease-modifying solutions there is still a critical need for systems that can provide more predictive and physiologically relevant results. One possible avenue is the development of patient-derived models, e.g. by reprogramming patient somatic cells into human induced pluripotent stem cells (hiPSCs), which can then be differentiated into any cell type for modelling. These systems contain key genetic information from the donors, and therefore have enormous potential as tools in the investigation of pathological mechanisms underlying disease phenotype, and progression, as well as in drug testing platforms. hiPSCs have been widely cultured in 2D systems, but in order to mimic human brain complexity, 3D models have been proposed as a more advanced alternative. This review will focus on the use of patient-derived hiPSCs to model AD, PD, HD and ALS. In brief, we will cover the available stem cells, types of 2D and 3D culture systems, existing models for neurodegenerative diseases, obstacles to model these diseases in vitro, and current perspectives in the field
Monitoring biological wastewater treatment processes: Recent advances in spectroscopy applications
Biological processes based on aerobic and anaerobic technologies have been continuously developed to wastewater treatment and are currently routinely employed to reduce the contaminants discharge levels in the environment. However, most methodologies commonly applied for monitoring key parameters are labor intensive, time-consuming and just provide a snapshot of the process. Thus, spectroscopy applications in biological processes are, nowadays, considered a rapid and effective alternative technology for real-time monitoring though still lacking implementation in full-scale plants. In this review, the application of spectroscopic techniques to aerobic and anaerobic systems is addressed focusing on UV--Vis, infrared, and fluorescence spectroscopy. Furthermore, chemometric techniques, valuable tools to extract the relevant data, are also referred. To that effect, a detailed analysis is performed for aerobic and anaerobic systems to summarize the findings that have been obtained since 2000. Future prospects for the application of spectroscopic techniques in biological wastewater treatment processes are further discussed.The authors thank the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit, COMPETE 2020 (POCI-01-0145-FEDER-006684) and the project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462) and BioTecNorte operation (NORTE-01-0145-FEDER-000004) funded by the European Regional Development Fund under the scope of Norte2020 - Programa Operacional Regional do Norte. The authors also acknowledge the financial support to Daniela P. Mesquita and Cristina Quintelas through the postdoctoral Grants (SFRH/BPD/82558/2011 and SFRH/BPD/101338/2014) provided by FCT - Portugal.info:eu-repo/semantics/publishedVersio
- …
