12 research outputs found

    Evaluating the Emotional State of a User Using a Webcam

    Get PDF
    In online learning is more difficult for teachers identify to see how individual students behave. Student’s emotions like self-esteem, motivation, commitment, and others that are believed to be determinant in student’s performance can not be ignored, as they are known (affective states and also learning styles) to greatly influence student’s learning. The ability of the computer to evaluate the emotional state of the user is getting bigger attention. By evaluating the emotional state, there is an attempt to overcome the barrier between man and non-emotional machine. Recognition of a real time emotion in e-learning by using webcams is research area in the last decade. Improving learning through webcams and microphones offers relevant feedback based upon learner’s facial expressions and verbalizations. The majority of current software does not work in real time – scans face and progressively evaluates its features. The designed software works by the use neural networks in real time which enable to apply the software into various fields of our lives and thus actively influence its quality. Validation of face emotion recognition software was annotated by using various experts. These expert findings were contrasted with the software results. An overall accuracy of our software based on the requested emotions and the recognized emotions is 78%. Online evaluation of emotions is an appropriate technology for enhancing the quality and efficacy of e-learning by including the learner®s emotional states

    Partial disentanglement of hierarchical variational auto‐encoder for texture synthesis

    No full text
    Multiple research studies have recently demonstrated deep networks can generate realistic‐looking textures and stylised images from a single texture example. However, they suffer from some drawbacks. Generative adversarial networks are in general difficult to train. Multiple feature variations, encoded in their latent representation, require a priori information to generate images with specific features. The auto‐encoders are prone to generate a blurry output. One of the main reasons is the inability to parameterise complex distributions. The authors present a novel texture generative model architecture extending the variational auto‐encoder approach. It gradually increases the accuracy of details in the reconstructed images. Thanks to the proposed architecture, the model is able to learn a higher level of details resulting from the partial disentanglement of latent variables. The generative model is also capable of synthesising complex real‐world textures. The model consists of multiple separate latent layers responsible for learning the gradual levels of texture details. Separate training of latent representations increases the stability of the learning process and provides partial disentanglement of latent variables. The experiments with proposed architecture demonstrate the potential of variational auto‐encoders in the domain of texture synthesis and also tend to yield sharper reconstruction as well as synthesised texture images

    Evaluating the Emotional State of a User Using a Webcam

    No full text
    In online learning is more difficult for teachers identify to see how individual students behave. Student’s emotions like self-esteem, motivation, commitment, and others that are believed to be determinant in student’s performance can not be ignored, as they are known (affective states and also learning styles) to greatly influence student’s learning. The ability of the computer to evaluate the emotional state of the user is getting bigger attention. By evaluating the emotional state, there is an attempt to overcome the barrier between man and non-emotional machine. Recognition of a real time emotion in e-learning by using webcams is research area in the last decade. Improving learning through webcams and microphones offers relevant feedback based upon learner’s facial expressions and verbalizations. The majority of current software does not work in real time – scans face and progressively evaluates its features. The designed software works by the use neural networks in real time which enable to apply the software into various fields of our lives and thus actively influence its quality. Validation of face emotion recognition software was annotated by using various experts. These expert findings were contrasted with the software results. An overall accuracy of our software based on the requested emotions and the recognized emotions is 78%. Online evaluation of emotions is an appropriate technology for enhancing the quality and efficacy of e-learning by including the learner®s emotional states
    corecore