16 research outputs found

    The connectivity of spring stopover sites for geese heading to arctic breeding grounds

    Get PDF
    During the spring migration arctic-breeding geese pause in temperate and sub-arctic staging areas in order to deposit body reserves for breeding. Focusing on a single arctic stopover site in West-Spitsbergen, Svalbard, Norway (Varsol-bukta, 77 degrees 45'N, 14 degrees 24'E), behavioural strategies of Barnacle Geese Branta leucopsis were investigated and body condition and presence of individually marked birds recorded. Individuals using different staging areas earlier along the migration route (Helgeland and Vesteralen on the Norwegian mainland) and heading to different breeding colonies (the close-by Nordenskioldkysten, and the distant Kongsfjorden) were compared during springs 2003-05. Birds in Vesteralen left the staging area earlier than those in Helgeland, and arrived earlier in Varsolbukta as well. In Varsolbukta, females gained body condition at a similar rate regardless of their colony affiliation, whereas males from Nordenskioldkysten exhibited a smaller overall increase in condition compared to males from Kongsfjorden. The Kongsfjorden birds stayed for a shorter period (average 2.8 days) than those from Nordenskioldkysten (average 4.0 days). Nordenskioldkysten birds frequently left Varsolbukta for short periods presumably visiting the breeding area in order to optimise nest initiation with respect to prevailing snow conditions. The date of final departure was also correlated with nest initiation date at Nordenskioldkysten. No such relationship for the Kongsfjorden birds was found. We suggest that the geese adopt a 'hopping' strategy, using a network of stopover sites in Svalbard during spring with a last stopover at a buffer area in the proximity to the breeding area. For this vulnerable population it is important to identify the sites forming the links in this chain, and to establish their function and utilisation by geese during the vital prebreeding period

    PTHR1 Loss-of-Function Mutations in Familial, Nonsyndromic Primary Failure of Tooth Eruption

    Get PDF
    Tooth eruption is a complex developmental process requiring coordinated navigation through alveolar bone and oral epithelium. Primary failure of tooth eruption (PFE) is associated with several syndromes primarily affecting skeletal development, but it is also known as a nonsyndromic autosomal-dominant condition. Teeth in the posterior quadrants of the upper and lower jaw are preferentially affected and usually result in an open bite extending from anterior to posterior. In this study, we show that familial, nonsyndromic PFE is caused by heterozygous mutations in the gene encoding the G protein-coupled receptor for parathyroid hormone and parathyroid hormone-like hormone (PTHR1). Three distinct mutations, namely c.1050-3C > G, c.543+1G > A, and c.463G > T, were identified in 15 affected individuals from four multiplex pedigrees. All mutations truncate the mature protein and therefore should lead to a functionless receptor, strongly suggesting that haplo-insufficiency of PTHR1 is the underlying cause of nonsyndromic PFE. Although complete inactivation of PTHR1 is known to underlie the autosomal-recessive Blomstrand osteochondrodysplasia (BOCD), a lethal form of short-limbed dwarfism, our data now imply that dominantly acting PTHR1 mutations that lead to haplo-insufficiency of the receptor result in a nonsyndromic phenotype affecting tooth development with high penetrance and variable expressivity

    PTHR1 Loss-of-Function Mutations in Familial, Nonsyndromic Primary Failure of Tooth Eruption

    Get PDF
    Tooth eruption is a complex developmental process requiring coordinated navigation through alveolar bone and oral epithelium. Primary failure of tooth eruption (PFE) is associated with several syndromes primarily affecting skeletal development, but it is also known as a nonsyndromic autosomal-dominant condition. Teeth in the posterior quadrants of the upper and lower jaw are preferentially affected and usually result in an open bite extending from anterior to posterior. In this study, we show that familial, nonsyndromic PFE is caused by heterozygous mutations in the gene encoding the G protein-coupled receptor for parathyroid hormone and parathyroid hormone-like hormone (PTHR1). Three distinct mutations, namely c.1050-3C > G, c.543+1G > A, and c.463G > T, were identified in 15 affected individuals from four multiplex pedigrees. All mutations truncate the mature protein and therefore should lead to a functionless receptor, strongly suggesting that haplo-insufficiency of PTHR1 is the underlying cause of nonsyndromic PFE. Although complete inactivation of PTHR1 is known to underlie the autosomal-recessive Blomstrand osteochondrodysplasia (BOCD), a lethal form of short-limbed dwarfism, our data now imply that dominantly acting PTHR1 mutations that lead to haplo-insufficiency of the receptor result in a nonsyndromic phenotype affecting tooth development with high penetrance and variable expressivity

    Mutations in the gene encoding the 3'-5' DNA exonuclease TREX1 are associated with systemic lupus erythematosus

    No full text
    TREX1 acts in concert with the SET complex in granzyme A - mediated apoptosis, and mutations in TREX1 cause Aicardi-Goutieres syndrome and familial chilblain lupus. Here, we report monoallelic frameshift or missense mutations and one 3' UTR variant of TREX1 present in 9/ 417 individuals with systemic lupus erythematosus but absent in 1,712 controls (P= 4.1x10(-7)). We demonstrate that two mutant TREX1 alleles alter subcellular targeting. Our findings implicate TREX1 in the pathogenesis of SLE

    SIOS's Earth Observation (EO), Remote Sensing (RS), and Operational Activities in Response to COVID-19

    Get PDF
    Svalbard Integrated Arctic Earth Observing System (SIOS) is an international partnership of research institutions studying the environment and climate in and around Svalbard. SIOS is developing an efficient observing system, where researchers share technology, experience, and data, work together to close knowledge gaps, and decrease the environmental footprint of science. SIOS maintains and facilitates various scientific activities such as the State of the Environmental Science in Svalbard (SESS) report, international access to research infrastructure in Svalbard, Earth observation and remote sensing services, training courses for the Arctic science community, and open access to data. This perspective paper highlights the activities of SIOS Knowledge Centre, the central hub of SIOS, and the SIOS Remote Sensing Working Group (RSWG) in response to the unprecedented situation imposed by the global pandemic coronavirus (SARS-CoV-2) disease 2019 (COVID-19). The pandemic has affected Svalbard research in several ways. When Norway declared a nationwide lockdown to decrease the rate of spread of the COVID-19 in the community, even more strict measures were taken to protect the Svalbard community from the potential spread of the disease. Due to the lockdown, travel restrictions, and quarantine regulations declared by many nations, most physical meetings, training courses, conferences, and workshops worldwide were cancelled by the first week of March 2020. The resumption of physical scientific meetings is still uncertain in the foreseeable future. Additionally, field campaigns to polar regions, including Svalbard, were and remain severely affected. In response to this changing situation, SIOS initiated several operational activities suitable to mitigate the new challenges resulting from the pandemic. This article provides an extensive overview of SIOS's Earth observation (EO), remote sensing (RS) and other operational activities strengthened and developed in response to COVID-19 to support the Svalbard scientific community in times of cancelled/postponed field campaigns in Svalbard. These include (1) an initiative to patch up field data (in situ) with RS observations, (2) a logistics sharing notice board for effective coordinating field activities in the pandemic times, (3) a monthly webinar series and panel discussion on EO talks, (4) an online conference on EO and RS, (5) the SIOS's special issue in the Remote Sensing (MDPI) journal, (6) the conversion of a terrestrial remote sensing training course into an online edition, and (7) the announcement of opportunity (AO) in airborne remote sensing for filling the data gaps using aerial imagery and hyperspectral data. As SIOS is a consortium of 24 research institutions from 9 nations, this paper also presents an extensive overview of the activities from a few research institutes in pandemic times and highlights our upcoming activities for the next year 2021. Finally, we provide a critical perspective on our overall response, possible broader impacts, relevance to other observing systems, and future directions. We hope that our practical services, experiences, and activities implemented in these difficult times will motivate other similar monitoring programs and observing systems when responding to future challenging situations. With a broad scientific audience in mind, we present our perspective paper on activities in Svalbard as a case study
    corecore