56 research outputs found

    Superhard Phases of Simple Substances and Binary Compounds of the B-C-N-O System: from Diamond to the Latest Results (a Review)

    Full text link
    The basic known and hypothetic one- and two-element phases of the B-C-N-O system (both superhard phases having diamond and boron structures and precursors to synthesize them) are described. The attention has been given to the structure, basic mechanical properties, and methods to identify and characterize the materials. For some phases that have been recently described in the literature the synthesis conditions at high pressures and temperatures are indicated.Comment: Review on superhard B-C-N-O phase

    Relations between lipoprotein(a) concentrations, LPA genetic variants, and the risk of mortality in patients with established coronary heart disease: a molecular and genetic association study

    Get PDF
    Background: Lipoprotein(a) concentrations in plasma are associated with cardiovascular risk in the general population. Whether lipoprotein(a) concentrations or LPA genetic variants predict long-term mortality in patients with established coronary heart disease remains less clear. Methods: We obtained data from 3313 patients with established coronary heart disease in the Ludwigshafen Risk and Cardiovascular Health (LURIC) study. We tested associations of tertiles of lipoprotein(a) concentration in plasma and two LPA single-nucleotide polymorphisms ([SNPs] rs10455872 and rs3798220) with all-cause mortality and cardiovascular mortality by Cox regression analysis and with severity of disease by generalised linear modelling, with and without adjustment for age, sex, diabetes diagnosis, systolic blood pressure, BMI, smoking status, estimated glomerular filtration rate, LDL-cholesterol concentration, and use of lipid-lowering therapy. Results for plasma lipoprotein(a) concentrations were validated in five independent studies involving 10 195 patients with established coronary heart disease. Results for genetic associations were replicated through large-scale collaborative analysis in the GENIUS-CHD consortium, comprising 106 353 patients with established coronary heart disease and 19 332 deaths in 22 studies or cohorts. Findings: The median follow-up was 9·9 years. Increased severity of coronary heart disease was associated with lipoprotein(a) concentrations in plasma in the highest tertile (adjusted hazard radio [HR] 1·44, 95% CI 1·14–1·83) and the presence of either LPA SNP (1·88, 1·40–2·53). No associations were found in LURIC with all-cause mortality (highest tertile of lipoprotein(a) concentration in plasma 0·95, 0·81–1·11 and either LPA SNP 1·10, 0·92–1·31) or cardiovascular mortality (0·99, 0·81–1·2 and 1·13, 0·90–1·40, respectively) or in the validation studies. Interpretation: In patients with prevalent coronary heart disease, lipoprotein(a) concentrations and genetic variants showed no associations with mortality. We conclude that these variables are not useful risk factors to measure to predict progression to death after coronary heart disease is established. Funding: Seventh Framework Programme for Research and Technical Development (AtheroRemo and RiskyCAD), INTERREG IV Oberrhein Programme, Deutsche Nierenstiftung, Else-Kroener Fresenius Foundation, Deutsche Stiftung für Herzforschung, Deutsche Forschungsgemeinschaft, Saarland University, German Federal Ministry of Education and Research, Willy Robert Pitzer Foundation, and Waldburg-Zeil Clinics Isny

    Risk profiles and one-year outcomes of patients with newly diagnosed atrial fibrillation in India: Insights from the GARFIELD-AF Registry.

    Get PDF
    BACKGROUND: The Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF) is an ongoing prospective noninterventional registry, which is providing important information on the baseline characteristics, treatment patterns, and 1-year outcomes in patients with newly diagnosed non-valvular atrial fibrillation (NVAF). This report describes data from Indian patients recruited in this registry. METHODS AND RESULTS: A total of 52,014 patients with newly diagnosed AF were enrolled globally; of these, 1388 patients were recruited from 26 sites within India (2012-2016). In India, the mean age was 65.8 years at diagnosis of NVAF. Hypertension was the most prevalent risk factor for AF, present in 68.5% of patients from India and in 76.3% of patients globally (P < 0.001). Diabetes and coronary artery disease (CAD) were prevalent in 36.2% and 28.1% of patients as compared with global prevalence of 22.2% and 21.6%, respectively (P < 0.001 for both). Antiplatelet therapy was the most common antithrombotic treatment in India. With increasing stroke risk, however, patients were more likely to receive oral anticoagulant therapy [mainly vitamin K antagonist (VKA)], but average international normalized ratio (INR) was lower among Indian patients [median INR value 1.6 (interquartile range {IQR}: 1.3-2.3) versus 2.3 (IQR 1.8-2.8) (P < 0.001)]. Compared with other countries, patients from India had markedly higher rates of all-cause mortality [7.68 per 100 person-years (95% confidence interval 6.32-9.35) vs 4.34 (4.16-4.53), P < 0.0001], while rates of stroke/systemic embolism and major bleeding were lower after 1 year of follow-up. CONCLUSION: Compared to previously published registries from India, the GARFIELD-AF registry describes clinical profiles and outcomes in Indian patients with AF of a different etiology. The registry data show that compared to the rest of the world, Indian AF patients are younger in age and have more diabetes and CAD. Patients with a higher stroke risk are more likely to receive anticoagulation therapy with VKA but are underdosed compared with the global average in the GARFIELD-AF. CLINICAL TRIAL REGISTRATION-URL: http://www.clinicaltrials.gov. Unique identifier: NCT01090362

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Open Magnetic Flux and Magnetic Reconnection During Steady Magnetic Convection Intervals

    Full text link
    The Imager for Magnetopause to Aurora Global Exploration (IMAGE) spacecraft was launched in 2000 with several imaging instruments onboard. The Far UltraViolet (FUV) experiment imaged the N2 LBH (Wideband Imaging Camera – WIC-), OI 135.6 nm (Spectrographic Imager –SI13-) and Doppler-shifted Lyman alpha auroral emission (SI12). The Doppler-shifted Lyman-alpha emission allows to monitor the auroral oval both on the day and night sides. Remote sensing of the polar aurora is completed by ground based data of the Super Dual Auroral Radar Network (SuperDARN) that monitors the ionospheric convection flow pattern in the polar region. In the present study, SI12 images are used to estimate the open/closed (o/c) field line boundary location, and monitor its movement. The SuperDARN data are used to compute the electric field of the polar cap at the location of the o/c boundary. The total electric field is then computed along the boundary accounting for its movement applying Faraday’s law, so that the dayside and nightside reconnection voltages can be retrieved. We apply this method to the study of several intervals of steady magnetic convection (SMC). SMC events are intervals of enhanced convection without classical substorm signatures. During these intervals, it is expected that the amount of open magnetic flux remains fairly constant, and it has been suggested that the rate of opening (at the magnetopause) and closure (in the magnetotail) of magnetic flux balance each other. These rates can be expressed as voltages with a positive sign for the opening and a negative sign for closure. The net reconnection voltage then represents the net rate of accumulation of open flux by the magnetosphere. We find that, during SMC intervals, the open magnetic flux varies only slowly, and sometimes remains stationary during several hours. As a consequence, the net voltage often remains close to zero during SMC intervals. Occasionally, we find that an increase in the opening voltage is followed by a similar intensification of the closure voltage after downtail convection of the newly created open flux. The convection time can be roughly estimated and ranges between 20 and 40 minutes, i.e. the typical order of magnitude of the convection time in the magnetosphere

    Nightside and dayside reconnection rates computed with IMAGE-FUV and SuperDARN data

    Full text link
    The Imager for Magnetopause to Aurora Global Exploration (IMAGE) spacecraft was launched in 2000 with several imaging instruments onboard. The Far UltraViolet (FUV) experiment was devoted to the imaging of the N2 LBH (Wideband Imaging Camera – WIC-), OI 135.6 nm (Spectrographic Imager –SI13-) and Doppler-shifted Lyman alpha auroral emission (SI12). The Doppler-shifted Lyman-alpha emission is solely due to proton precipitation and is not contaminated by dayglow, allowing to monitor the auroral oval at dayside as well as at nightside. Remote sensing of the polar aurora can be advantageously completed by ground based data of the Super Dual Auroral Radar Network (SuperDARN) that monitors the ionospheric convection flow pattern in the polar region. In the present study, the SI12 images are used to determine the open/closed (o/c) field line boundary, and monitor its movement. The SuperDARN data are used to compute the electric field of the polar cap at the location of the o/c boundary. The total electric field is then computed along the boundary accounting for its movement applying Faraday’s law, so that the dayside and nightside reconnection voltages can be retrieved. This procedure is applied to several substorms simultaneously observed with IMAGE-FUV and SuperDARN. The dayside reconnection voltage feeds the magnetosphere with open flux, which is later closed by nightside reconnection. The computed dayside reconnection rate is consistent with the solar wind properties measured with the GEOTAIL, WIND and ACE satellites. We identify the presence of nightside reconnection due to pseudobreakups taking place during the growth phase. We establish that, at substorm time, the nightside reconnection rate is maximum at the time of the substorm onset and then slowly returns to undisturbed values

    Study Of The Energy Budget During Isolated Auroral Substorms

    Full text link
    The solar atmosphere permanently releases ionized material forming the solar wind, which carries the frozen-in interplanetary magnetic field (IMF). When the solar wind reaches the space environment of the Earth, the IMF and the geomagnetic field can reconfigure their topology in the process of magnetic reconnection. Geomagnetic field lines are therefore opened by the interplanetary medium and dragged anti-sunward by the solar wind flow, which gives the Earth magnetosphere an elongated shape. This process results in the accumulation of open magnetic flux and energy in the geomagnetic tail. Eventually, when a significant amount of open magnetic flux has been accumulated and convected downtail, intense magnetic reconnection also occurs inside of the magnetotail, in the central plasma sheet, and the magnetic field lines return to a closed configuration, which reduces the amount of open magnetic flux. This flux closure process releases a significant amount of energy often estimated to be of the order 10^15 - 10^16 J stored in the tail, which can trigger auroral substorms, as a result of the solar wind - magnetosphere interaction. The released energy is distributed between the ionosphere, the ring current, the plasma sheet, and the formation of a plasmoid. In this work, we combine data from the ESA Cluster and the NASA IMAGE spacecraft to investigate three reconnection events occurring in 2001. We compare in-situ measurement from Cluster and auroral FUV imaging from IMAGE complemented by SuperDARN radar measurement of the ionospheric convection. The auroral hemispheric power is computed using the IMAGE-FUV images of the electron and proton aurora. The amount of open geomagnetic flux is estimated using the imaging of the proton aurora and the magnetic reconnection rates are derived from both missions and the SuperDARN data. We analyze the energy circulation by assessing the energy conversion and dissipation for each individual process during different substorm periods. We compare the hemispheric power, open magnetic flux and reconnection rates and search for a possible relation between them
    corecore