1,735 research outputs found
Terrestrial Planet Occurrence Rates for the Kepler GK Dwarf Sample
We measure planet occurrence rates using the planet candidates discovered by
the Q1-Q16 Kepler pipeline search. This study examines planet occurrence rates
for the Kepler GK dwarf target sample for planet radii, 0.75<Rp<2.5 Rearth, and
orbital periods, 50<Porb<300 days, with an emphasis on a thorough exploration
and identification of the most important sources of systematic uncertainties.
Integrating over this parameter space, we measure an occurrence rate of F=0.77
planets per star, with an allowed range of 0.3<F<1.9. The allowed range takes
into account both statistical and systematic uncertainties, and values of F
beyond the allowed range are significantly in disagreement with our analysis.
We generally find higher planet occurrence rates and a steeper increase in
planet occurrence rates towards small planets than previous studies of the
Kepler GK dwarf sample. Through extrapolation, we find that the one year
orbital period terrestrial planet occurrence rate, zeta_1=0.1, with an allowed
range of 0.01<zeta_1<2, where zeta_1 is defined as the number of planets per
star within 20% of the Rp and Porb of Earth. For G dwarf hosts, the zeta_1
parameter space is a subset of the larger eta_earth parameter space, thus
zeta_1 places a lower limit on eta_earth for G dwarf hosts. From our analysis,
we identify the leading sources of systematics impacting Kepler occurrence rate
determinations as: reliability of the planet candidate sample, planet radii,
pipeline completeness, and stellar parameters.Comment: 19 Pages, 17 Figures, Submitted ApJ. Python source to support Kepler
pipeline completeness estimates available at
http://github.com/christopherburke/KeplerPORTs
A super-Earth-sized planet orbiting in or near the habitable zone around Sun-like star
We present the discovery of a super-earth-sized planet in or near the
habitable zone of a sun-like star. The host is Kepler-69, a 13.7 mag G4V-type
star. We detect two periodic sets of transit signals in the three-year flux
time series of Kepler-69, obtained with the Kepler spacecraft. Using the very
high precision Kepler photometry, and follow-up observations, our confidence
that these signals represent planetary transits is >99.1%. The inner planet,
Kepler-69b, has a radius of 2.24+/-0.4 Rearth and orbits the host star every
13.7 days. The outer planet, Kepler-69c, is a super-Earth-size object with a
radius of 1.7+/-0.3 Rearth and an orbital period of 242.5 days. Assuming an
Earth-like Bond albedo, Kepler-69c has an equilibrium temperature of 299 +/- 19
K, which places the planet close to the habitable zone around the host star.
This is the smallest planet found by Kepler to be orbiting in or near habitable
zone of a Sun-like star and represents an important step on the path to finding
the first true Earth analog.Comment: Accepted for publication in the Astrophysical Journa
Planetary Candidates Observed by Kepler IV: Planet Sample From Q1-Q8 (22 Months)
We provide updates to the Kepler planet candidate sample based upon nearly
two years of high-precision photometry (i.e., Q1-Q8). From an initial list of
nearly 13,400 Threshold Crossing Events (TCEs), 480 new host stars are
identified from their flux time series as consistent with hosting transiting
planets. Potential transit signals are subjected to further analysis using the
pixel-level data, which allows background eclipsing binaries to be identified
through small image position shifts during transit. We also re-evaluate Kepler
Objects of Interest (KOI) 1-1609, which were identified early in the mission,
using substantially more data to test for background false positives and to
find additional multiple systems. Combining the new and previous KOI samples,
we provide updated parameters for 2,738 Kepler planet candidates distributed
across 2,017 host stars. From the combined Kepler planet candidates, 472 are
new from the Q1-Q8 data examined in this study. The new Kepler planet
candidates represent ~40% of the sample with Rp~1 Rearth and represent ~40% of
the low equilibrium temperature (Teq<300 K) sample. We review the known biases
in the current sample of Kepler planet candidates relevant to evaluating planet
population statistics with the current Kepler planet candidate sample.Comment: 12 pages, 8 figures, Accepted ApJ Supplemen
Planetary Candidates Observed by Kepler V: Planet Sample from Q1-Q12 (36 Months)
The Kepler mission discovered 2842 exoplanet candidates with 2 years of data.
We provide updates to the Kepler planet candidate sample based upon 3 years
(Q1-Q12) of data. Through a series of tests to exclude false-positives,
primarily caused by eclipsing binary stars and instrumental systematics, 855
additional planetary candidates have been discovered, bringing the total number
known to 3697. We provide revised transit parameters and accompanying posterior
distributions based on a Markov Chain Monte Carlo algorithm for the cumulative
catalogue of Kepler Objects of Interest. There are now 130 candidates in the
cumulative catalogue that receive less than twice the flux the Earth receives
and more than 1100 have a radius less than 1.5 Rearth. There are now a dozen
candidates meeting both criteria, roughly doubling the number of candidate
Earth analogs. A majority of planetary candidates have a high probability of
being bonafide planets, however, there are populations of likely
false-positives. We discuss and suggest additional cuts that can be easily
applied to the catalogue to produce a set of planetary candidates with good
fidelity. The full catalogue is publicly available at the NASA Exoplanet
Archive.Comment: Accepted for publication, ApJ
Planetary Candidates Observed by Kepler. VIII. A Fully Automated Catalog With Measured Completeness and Reliability Based on Data Release 25
We present the Kepler Object of Interest (KOI) catalog of transiting
exoplanets based on searching four years of Kepler time series photometry (Data
Release 25, Q1-Q17). The catalog contains 8054 KOIs of which 4034 are planet
candidates with periods between 0.25 and 632 days. Of these candidates, 219 are
new and include two in multi-planet systems (KOI-82.06 and KOI-2926.05), and
ten high-reliability, terrestrial-size, habitable zone candidates. This catalog
was created using a tool called the Robovetter which automatically vets the
DR25 Threshold Crossing Events (TCEs, Twicken et al. 2016). The Robovetter also
vetted simulated data sets and measured how well it was able to separate TCEs
caused by noise from those caused by low signal-to-noise transits. We discusses
the Robovetter and the metrics it uses to sort TCEs. For orbital periods less
than 100 days the Robovetter completeness (the fraction of simulated transits
that are determined to be planet candidates) across all observed stars is
greater than 85%. For the same period range, the catalog reliability (the
fraction of candidates that are not due to instrumental or stellar noise) is
greater than 98%. However, for low signal-to-noise candidates between 200 and
500 days around FGK dwarf stars, the Robovetter is 76.7% complete and the
catalog is 50.5% reliable. The KOI catalog, the transit fits and all of the
simulated data used to characterize this catalog are available at the NASA
Exoplanet Archive.Comment: 61 pages, 23 Figures, 9 Tables, Accepted to The Astrophysical Journal
Supplement Serie
Discovery and Validation of Kepler-452b: A 1.6-Re Super Earth Exoplanet in the Habitable Zone of a G2 Star
We report on the discovery and validation of Kepler-452b, a transiting planet
identified by a search through the 4 years of data collected by NASA's Kepler
Mission. This possibly rocky 1.63 R planet orbits
its G2 host star every 384.843 days, the longest orbital
period for a small (R < 2 R) transiting exoplanet to date. The
likelihood that this planet has a rocky composition lies between 49% and 62%.
The star has an effective temperature of 575785 K and a log g of
4.320.09. At a mean orbital separation of 1.046 AU,
this small planet is well within the optimistic habitable zone of its star
(recent Venus/early Mars), experiencing only 10% more flux than Earth receives
from the Sun today, and slightly outside the conservative habitable zone
(runaway greenhouse/maximum greenhouse). The star is slightly larger and older
than the Sun, with a present radius of 1.11 R and an
estimated age of 6 Gyr. Thus, Kepler-452b has likely always been in the
habitable zone and should remain there for another 3 Gyr.Comment: 19 pages, 16 figure
Planetary Candidates Observed by Kepler. VII. The First Fully Uniform Catalog Based on The Entire 48 Month Dataset (Q1-Q17 DR24)
We present the seventh Kepler planet candidate catalog, which is the first to
be based on the entire, uniformly processed, 48 month Kepler dataset. This is
the first fully automated catalog, employing robotic vetting procedures to
uniformly evaluate every periodic signal detected by the Q1-Q17 Data Release 24
(DR24) Kepler pipeline. While we prioritize uniform vetting over the absolute
correctness of individual objects, we find that our robotic vetting is overall
comparable to, and in most cases is superior to, the human vetting procedures
employed by past catalogs. This catalog is the first to utilize artificial
transit injection to evaluate the performance of our vetting procedures and
quantify potential biases, which are essential for accurate computation of
planetary occurrence rates. With respect to the cumulative Kepler Object of
Interest (KOI) catalog, we designate 1,478 new KOIs, of which 402 are
dispositioned as planet candidates (PCs). Also, 237 KOIs dispositioned as false
positives (FPs) in previous Kepler catalogs have their disposition changed to
PC and 118 PCs have their disposition changed to FP. This brings the total
number of known KOIs to 8,826 and PCs to 4,696. We compare the Q1-Q17 DR24 KOI
catalog to previous KOI catalogs, as well as ancillary Kepler catalogs, finding
good agreement between them. We highlight new PCs that are both potentially
rocky and potentially in the habitable zone of their host stars, many of which
orbit solar-type stars. This work represents significant progress in accurately
determining the fraction of Earth-size planets in the habitable zone of
Sun-like stars. The full catalog is publicly available at the NASA Exoplanet
Archive.Comment: Accepted to the Astrophysical Journal Supplement Series. 30 pages, 9
figures, 7 tables. We make the DR24 robovetter decision code publicly
available at http://github.com/JeffLCoughlin/robovetter, with input and
output examples provided using the same data as contained in the full paper's
table
Planetary Candidates Observed by Kepler VI: Planet Sample from Q1-Q16 (47 Months)
\We present the sixth catalog of Kepler candidate planets based on nearly 4
years of high precision photometry. This catalog builds on the legacy of
previous catalogs released by the Kepler project and includes 1493 new Kepler
Objects of Interest (KOIs) of which 554 are planet candidates, and 131 of these
candidates have best fit radii <1.5 R_earth. This brings the total number of
KOIs and planet candidates to 7305 and 4173 respectively. We suspect that many
of these new candidates at the low signal-to-noise limit may be false alarms
created by instrumental noise, and discuss our efforts to identify such
objects. We re-evaluate all previously published KOIs with orbital periods of
>50 days to provide a consistently vetted sample that can be used to improve
planet occurrence rate calculations. We discuss the performance of our planet
detection algorithms, and the consistency of our vetting products. The full
catalog is publicly available at the NASA Exoplanet Archive.Comment: 18 pages, to be published in the Astrophysical Journal Supplement
Serie
The IceCube Neutrino Observatory: Instrumentation and Online Systems
The IceCube Neutrino Observatory is a cubic-kilometer-scale high-energy
neutrino detector built into the ice at the South Pole. Construction of
IceCube, the largest neutrino detector built to date, was completed in 2011 and
enabled the discovery of high-energy astrophysical neutrinos. We describe here
the design, production, and calibration of the IceCube digital optical module
(DOM), the cable systems, computing hardware, and our methodology for drilling
and deployment. We also describe the online triggering and data filtering
systems that select candidate neutrino and cosmic ray events for analysis. Due
to a rigorous pre-deployment protocol, 98.4% of the DOMs in the deep ice are
operating and collecting data. IceCube routinely achieves a detector uptime of
99% by emphasizing software stability and monitoring. Detector operations have
been stable since construction was completed, and the detector is expected to
operate at least until the end of the next decade.Comment: 83 pages, 50 figures; updated with minor changes from journal review
and proofin
- …
