Repository der Technischen Hochschule Ingolstadt
Not a member yet
    3019 research outputs found

    Oblivious Lookup Tables

    No full text

    Machine Learning Models for Soil Parameter Prediction Based on Satellite, Weather, Clay and Yield Data

    Get PDF
    Efficient nutrient management and precise fertilization are essential for advancing modern agriculture, particularly in regions striving to optimize crop yields sustainably. The AgroLens project endeavors to address this challenge by develop ing Machine Learning (ML)-based methodologies to predict soil nutrient levels without reliance on laboratory tests. By leveraging state of the art techniques, the project lays a foundation for acionable insights to improve agricultural productivity in resource-constrained areas, such as Africa. The approach begins with the development of a robust European model using the LUCAS Soil dataset and Sentinel-2 satellite imagery to estimate key soil properties, including phosphorus, potassium, nitrogen, and pH levels. This model is then enhanced by integrating supplementary features, such as weather data, harvest rates, and Clay AI-generated embeddings. This report details the methodological framework, data preprocessing strategies, and ML pipelines employed in this project. Advanced algorithms, including Random Forests, Extreme Gradient Boosting (XGBoost), and Fully Connected Neural Networks (FCNN), were implemented and finetuned for precise nutrient prediction. Results showcase robust model performance, with root mean square error values meeting stringent accuracy thresholds. By establishing a reproducible and scalable pipeline for soil nutrient prediction, this research paves the way for transformative agricultural applications, including precision fertilization and improved resource allocation in underresourced regions like Africa

    Musculoskeletal simulation of elbow stability for common injury patterns

    Get PDF
    Elbow stability is derived from a combination of muscular, ligamentous, and bony structures. After an elbow trauma the stability of the joint is an important decision criterion for the subsequent treatment. The decision regarding nonoperative/operative care depends mostly on subjective assessments of medical experts. Therefore, the aim of this study is to use musculoskeletal simulations as an objective assessment tool to investigate the extent to which failure of different stabilizers affects the elbow stability and how these observations correspond to the assessment from clinical practice. A musculoskeletal elbow simulation model was developed for this aim. To investigate the stability of the elbow, varus/valgus moments were applied under 0°, 45°, and 90° flexion while the respective cubital angle was analyzed. This was performed for nine different injury scenarios, which were also evaluated for stability by clinical experts. With the results, it can be determined by which injury pattern and under which flexion angle the elbow stability is impaired regarding varus/valgus moments. The scenario with a complete failure of the medial and lateral ligaments and a fracture of the radial head was identified as having the greatest instability. The study presented a numerical determination of elbow stability against varus/valgus moments regarding clinical injury patterns, as well as a comparison of the numerical outcome with experience gained in clinical practice. The numerical predictions agree well with the assessments of the clinical specialists. Thus, the results from musculoskeletal simulation can make an important contribution to a more objective assessment of the elbow stability

    Information Mismatch in PHH3-Assisted Mitosis Annotation Leads to Interpretation Shifts in H&E Slide Analysis

    Get PDF
    The count of mitotic figures (MFs) observed in hematoxylin and eosin (H&E)-stained slides is an important prognostic marker, as it is a measure for tumor cell proliferation. However, the identification of MFs has a known low inter-rater agreement. In a computer-aided setting, deep learning algorithms can help to mitigate this, but they require large amounts of annotated data for training and validation. Furthermore, label noise introduced during the annotation process may impede the algorithms' performance. Unlike H&E, where identification of MFs is based mainly on morphological features, the mitosis-specific antibody phospho-histone H3 (PHH3) specifically highlights MFs. Counting MFs on slides stained against PHH3 leads to higher agreement among raters and has therefore recently been used as a ground truth for the annotation of MFs in H&E. However, as PHH3 facilitates the recognition of cells indistinguishable from H&E staining alone, the use of this ground truth could potentially introduce an interpretation shift and even label noise into the H&E-related dataset, impacting model performance. This study analyzes the impact of PHH3-assisted MF annotation on inter-rater reliability and object level agreement through an extensive multi-rater experiment. Subsequently, MF detectors, including a novel dual-stain detector, were evaluated on the resulting datasets to investigate the influence of PHH3-assisted labeling on the models' performance. We found that the annotators' object-level agreement significantly increased when using PHH3-assisted labeling (F1: 0.53 to 0.74). However, this enhancement in label consistency did not translate to improved performance for H&E-based detectors, neither during the training phase nor the evaluation phase. Conversely, the dual-stain detector was able to benefit from the higher consistency. This reveals an information mismatch between the H&E and PHH3-stained images as the cause of this effect, which renders PHH3-assisted annotations not well-aligned for use with H&E-based detectors. Based on our findings, we propose an improved PHH3-assisted labeling procedure

    921

    full texts

    3,019

    metadata records
    Updated in last 30 days.
    Repository der Technischen Hochschule Ingolstadt is based in Germany
    Access Repository Dashboard
    Do you manage Open Research Online? Become a CORE Member to access insider analytics, issue reports and manage access to outputs from your repository in the CORE Repository Dashboard! 👇