527 research outputs found

    Biological soil crust effects and responses in arid ecosystems: recent advances at the species level

    Get PDF
    La costra biológica del suelo (CBS) es un componente complejo del ecosistema que engloba diferentes organismos (líquenes, musgos, hepáticas, cianobacterias, hongos, algas) presentes en las primeras capas de suelo. La CBS se encuentra en una amplia variedad de ecosistemas, aunque generalmente es más abundante en ecosistemas donde la cobertura de plantas vasculares es escasa, como los ecosistemas áridos. En estos ecosistemas, la CBS contribuye considerablemente a su biodiversidad y funcionamiento. Debido a la gran dificultad para la identificación de especies de estas comunidades, la mayoría de la investigación sobre la CBS se ha desarrollado a escala de comunidad y grupo morfológico. A este nivel, se ha podido observar el gran potencial de estas comunidades de contribuir a la estructura y dinámica del ecosistema: interaccionan con las primeras capas del suelo y con otros organismos, participan en la fijación de carbono y nitrógeno, así como en procesos hidrológicos y en el ciclo de nutrientes. Sin embargo, avances recientes en el conocimiento de la CBS arrojan interesantes y marcadas diferencias en la ecología y el papel funcional de las distintas especies que la componen, con las consecuentes implicaciones en la gestión y conservación de estas comunidades y de los ecosistemas que habitan. En particular, se han observado respuestas específicas en términos de presencia, abundancia y frecuencia ante diversos factores ambientales (variables climáticas, tipo de sustrato, presencia de plantas vasculares y perturbación por pastoreo – recuperación natural), así como un efecto a nivel de especie sobre las propiedades del suelo.Biological soil crusts (BSCs) constitute a complex component of the ecosystem formed by different organisms (lichens, mosses, liverworts, cyanobacteria, fungi, algae) associated with soil surface. These communities are present in a wide variety of ecosystems; however, their abundance is generally higher in arid environments with sparse vegetation cover. In these ecosystems, BSCs greatly contribute to biodiversity and ecosystem functioning. Due to technical difficulties in species identification, most studies on BSCs have been carried out at community and morphotype levels. These studies have emphasized the potential role of BSCs in defining ecosystem structure and functioning by: interacting with topsoil layers and other soil organisms, participating in carbon and nitrogen fixation, and also in hydrological and nutrient cycling. Notwithstanding, recent advances in our knowledge about BSCs show substantial and interesting differences in the ecology and functional roles of BSC species, with marked implications in the management and conservation of these communities and their ecosystems. Particularly, it has been observed that BSC presence, abundance and frequency respond differently to diverse environmental factors (climatic variables, soil type, presence of vascular plants, and grazing disturbance - natural recovery) at the species level, and also do BSC effects on topsoil properties.Este trabajo ha sido parcialmente financiado por la Comunidad Autónoma de Madrid (Proyecto REMEDINAL2, S2009/AMB-1783) y el Ministerio de Ciencia e Innovación (Proyecto EPICON, CGL2010-22049)

    Pyrrolizidines for direct air capture and CO2 conversion

    Full text link
    Greenhouse gases such as CO2 strongly contribute to the rising temperatures of our planet, but as long as our society is dependent on fossil fuels, this trend will even increase in the near future. Therefore, CO2 capture and subsequent utilization constitute an approach for decarbonization and CO2 mitigation, and for this purpose, amine scrubbing remains the industrially most established process. In this article, we describe the CO2 capture-ability of pyrrolizidine-based diamines, a scaffold with remarkably good properties to fulfill this challenge. We observed fast equimolar CO2-uptake, as well as high stability of these compounds during multiple capture and release-cycles. In addition, the amines could be utilized for direct air capture. Finally, we demonstrate the utility of the pyrrolizidine absorbents in the reduction of CO2 and for the formation of oxazolidinones

    TGF-β dependent regulation of oxygen radicals during transdifferentiation of activated hepatic stellate cells to myofibroblastoid cells

    Get PDF
    BACKGROUND: The activation of hepatic stellate cells (HSCs) plays a pivotal role during liver injury because the resulting myofibroblasts (MFBs) are mainly responsible for connective tissue re-assembly. MFBs represent therefore cellular targets for anti-fibrotic therapy. In this study, we employed activated HSCs, termed M1-4HSCs, whose transdifferentiation to myofibroblastoid cells (named M-HTs) depends on transforming growth factor (TGF)-β. We analyzed the oxidative stress induced by TGF-β and examined cellular defense mechanisms upon transdifferentiation of HSCs to M-HTs. RESULTS: We found reactive oxygen species (ROS) significantly upregulated in M1-4HSCs within 72 hours of TGF-β administration. In contrast, M-HTs harbored lower intracellular ROS content than M1-4HSCs, despite of elevated NADPH oxidase activity. These observations indicated an upregulation of cellular defense mechanisms in order to protect cells from harmful consequences caused by oxidative stress. In line with this hypothesis, superoxide dismutase activation provided the resistance to augmented radical production in M-HTs, and glutathione rather than catalase was responsible for intracellular hydrogen peroxide removal. Finally, the TGF-β/NADPH oxidase mediated ROS production correlated with the upregulation of AP-1 as well as platelet-derived growth factor receptor subunits, which points to important contributions in establishing antioxidant defense. CONCLUSION: The data provide evidence that TGF-β induces NADPH oxidase activity which causes radical production upon the transdifferentiation of activated HSCs to M-HTs. Myofibroblastoid cells are equipped with high levels of superoxide dismutase activity as well as glutathione to counterbalance NADPH oxidase dependent oxidative stress and to avoid cellular damage

    TGF-β dependent regulation of oxygen radicals during transdifferentiation of activated hepatic stellate cells to myofibroblastoid cells

    Get PDF
    Background: The activation of hepatic stellate cells (HSCs) plays a pivotal role during liver injury because the resulting myofibroblasts (MFBs) are mainly responsible for connective tissue re-assembly. MFBs represent therefore cellular targets for anti-fibrotic therapy. In this study, we employed activated HSCs, termed M1-4HSCs, whose transdifferentiation to myofibroblastoid cells (named M-HTs) depends on transforming growth factor (TGF)-β. We analyzed the oxidative stress induced by TGF-β and examined cellular defense mechanisms upon transdifferentiation of HSCs to M-HTs. Results: We found reactive oxygen species (ROS) significantly upregulated in M1-4HSCs within 72 hours of TGF-β administration. In contrast, M-HTs harbored lower intracellular ROS content than M1-4HSCs, despite of elevated NADPH oxidase activity. These observations indicated an upregulation of cellular defense mechanisms in order to protect cells from harmful consequences caused by oxidative stress. In line with this hypothesis, superoxide dismutase activation provided the resistance to augmented radical production in M-HTs, and glutathione rather than catalase was responsible for intracellular hydrogen peroxide removal. Finally, the TGF-β/NADPH oxidase mediated ROS production correlated with the upregulation of AP-1 as well as platelet-derived growth factor receptor subunits, which points to important contributions in establishing antioxidant defense. Conclusion: The data provide evidence that TGF-β induces NADPH oxidase activity which causes radical production upon the transdifferentiation of activated HSCs to M-HTs. Myofibroblastoid cells are equipped with high levels of superoxide dismutase activity as well as glutathione to counterbalance NADPH oxidase dependent oxidative stress and to avoid cellular damage

    Structural basis for selective targeting of Rac subfamily GTPases by a bacterial effector protein

    Get PDF
    Ras-homology (Rho) family GTPases are conserved molecular switches controlling fundamental cellular activities in eukaryotic cells. As such, they are targeted by numerous bacterial toxins and effector proteins, which have been intensively investigated regarding their biochemical activities and discrete target spectra; however, molecular mechanisms of target selectivity have remained elusive. Here, we report a bacterial effector protein that targets all four Rac subfamily members of Rho family GTPases, but none of the closely related Cdc42 or RhoA subfamilies. This exquisite target selectivity of the FIC domain AMP-transferase Bep1 from Bartonella rochalimae is based on electrostatic interactions with a subfamily-specific pair of residues in the nucleotide-binding motif and the Rho insert helix. Residue substitutions at the identified positions in Cdc42 facilitate modification by Bep1, while corresponding Cdc42-like substitutions in Rac1 greatly diminish modification. Our study establishes a structural paradigm for target selectivity towards Rac subfamily GTPases and provides a highly selective tool for their functional analysis

    Notes on ecology of wild goffin’s cockatoo in the late dry season with emphasis on feeding ecology

    Get PDF
    Experimental work on captive Goffin’s cockatoos (Cacatua goffiniana) has highlighted the remarkable cognitive abilities of this species. However, little is known about its behavior in the natural habitat on the Tanimbar Archipelago in Indonesia. In order to fully understand the evolutionary roots leading to cognitively advanced skills, such as multi-step problem solving or flexible tool use and manufacture, it is crucial to study the ecological challenges faced by the respective species in the wild. The three-month expedition presented here aimed at gaining first insights into the cockatoos’ feeding ecology and breeding behavior. We could confirm previous predictions that Goffin’s cockatoos are opportunistic foragers and consume a variety of resources (seeds, fruit, inflorescence, roots). Their breeding season may be estimated to start between June and early July and they face potential predation from ground and aerial predators. Additionally, the observational data provide indications that Goffin’s cockatoos are extractive foragers, which together with relying on multiple food sources might be considered a prerequisite of tool use

    Gene Sequence and the 1.8 Å Crystal Structure of the Tungsten-Containing Formate Dehydrogenase from Desulfovibrio gigas

    Get PDF
    AbstractDesulfovibrio gigas formate dehydrogenase is the first representative of a tungsten-containing enzyme from a mesophile that has been structurally characterized. It is a heterodimer of 110 and 24 kDa subunits. The large subunit, homologous to E. coli FDH-H and to D. desulfuricans nitrate reductase, harbors the W site and one [4Fe-4S] center. No small subunit ortholog containing three [4Fe-4S] clusters has been reported. The structural homology with E. coli FDH-H shows that the essential residues (SeCys158, His159, and Arg407) at the active site are conserved. The active site is accessible via a positively charged tunnel, while product release may be facilitated, for H+ by buried waters and protonable amino acids and for CO2 through a hydrophobic channel

    A binary with a δ\delta~Scuti star and an oscillating red giant: orbit and asteroseismology of KIC9773821

    Get PDF
    We study the δ\delta Scuti -- red giant binary KIC9773821, the first double-pulsator binary of its kind. It was observed by \textit{Kepler} during its four-year mission. Our aims are to ascertain whether the system is bound, rather than a chance alignment, and to identify the evolutionary state of the red giant via asteroseismology. An extension of these aims is to determine a dynamical mass and an age prior for a δ\delta Sct star, which may permit mode identification via further asteroseismic modelling. We determine spectroscopic parameters and radial velocities (RVs) for the red giant component using HERMES@Mercator spectroscopy. Light arrival-time delays from the δ\delta Sct pulsations are used with the red-giant RVs to determine that the system is bound and to infer its orbital parameters, including the binary mass ratio. We use asteroseismology to model the individual frequencies of the red giant to give a mass of 2.100.10+0.202.10^{+0.20}_{-0.10} M_{\odot} and an age of 1.080.24+0.061.08^{+0.06}_{-0.24} Gyr. We find that it is a helium-burning secondary clump star, confirm that it follows the standard νmax\nu_{\rm max} scaling relation, and confirm its observed period spacings match their theoretical counterparts in the modelling code MESA. Our results also constrain the mass and age of the δ\delta Sct star. We leverage these constraints to construct δ\delta Sct models in a reduced parameter space and identify four of its five pulsation modes.Comment: Accepted for publication in MNRA

    Re-evaluation of the spectroscopic data and redox properties

    Get PDF
    Eur. J. Biochem. 270, 3904–3915 (2003)The cytochrome c nitrite reductase is isolated from the membranes of the sulfate-reducing bacterium Desulfovibrio desulfuricans ATCC 27774 as a heterooligomeric complex composed by two subunits (61 kDa and 19 kDa) containing c-type hemes, encoded by the genes nrfA and nrfH,respectively. The extracted complex has in average a 2NrfA:1NrfH composition. The separation of ccNiR subunits from one another is accomplished by gel filtration chromatography in the presence of SDS. The amino-acid sequence and biochemical subunits characterization show that NrfA contains five hemes and NrfH four hemes. These considerations enabled the revision of a vast amount of existing spectroscopic data on the NrfHA complex that was not originally well interpreted due to the lackof knowledge on the heme content and the oligomeric enzyme status. Based on EPRandMo¨ ssbauer parameters and their correlation to structural information recently obtained from X-ray crystallography on the NrfA structure [Cunha, C.A., Macieira, S., Dias, J.M., Almeida, M.G., Gonçalves, L.M.L., Costa, C., Lampreia, J.,Huber,R., Moura, J.J.G., Moura, I. & Romão, M. (2003) J. Biol. Chem. 278, 17455– 17465], we propose the full assignment of midpoint reduction potentials values to the individual hemes.NrfAcontains the high-spin catalytic site ()80mV) as well as a quite unusual high reduction potential (+150 mV)/low-spin bis-His coordinated heme, considered to be the site where electrons enter. In addition, the reassessment of the spectroscopic data allowed the first partial spectroscopic characterization of theNrfH subunit. The four NrfH hemes are all in a low-spin state (S ¼ 1/2).One of them has a gmax at 3.55, characteristic of bis-histidinyl iron ligands in a noncoplanar arrangement, and has a positive reduction potential
    corecore