64 research outputs found

    Differential expressed genes in ECV304 Endothelial-like Cells infected with Human Cytomegalovirus

    Get PDF
    Background: Human cytomegalovirus (HCMV) is a virus which has the potential to alter cellular gene expression through multiple mechanisms.Objective: With the application of DNA microarrays, we could monitor the effects of pathogens on host-cell gene expression programmes in great depth and on a broad scale.Methods: Changes in mRNA expression levels of human endothelial-like ECV304 cells following infection with human cytomegalovirus AD169 strain was analyzed by a microarray system comprising 21073 60-mer oligonucleotide probes which represent 18716 human genes or transcripts.Results: The results from cDNA microarray showed that there were 559 differential expressed genes consisted of 471 upregulated genes and 88 down-regulated genes. Real-time qPCR was performed to validate the expression of 6 selected genes (RPS24, MGC8721, SLC27A3, MST4, TRAF2 and LRRC28), and the results of which were consistent with those from the microarray. Among 237 biology processes, 39 biology processes were found to be related significantly to HCMV-infection. The signal transduction is the most significant biological process with the lowest p value (p=0.005) among all biological process which involved in response to HCMV infection.Conclusion: Several of these gene products might play key roles in virus-induced pathogenesis. These findings may help to elucidate the pathogenic mechanisms of HCMV caused diseases.Keywords: Human cytomegalovirus, microarray, Gene expression profiling; infectomicsAfrican Health Sciences 2013; 13(4): 864 - 87

    Phylogenetic and molecular characterization of coxsackievirus A24 variant isolates from a 2010 acute hemorrhagic conjunctivitis outbreak in Guangdong, China

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Acute hemorrhagic conjunctivitis is a common disease in China. As a notifiable disease, cases are registered by ophthalmologists on the AHC surveillance system. An AHC outbreak caused by CA24v was observed in Guangdong Province in 2007 by the National Disease Supervision Information Management System. Three years later, a larger outbreak occurred in Guangdong during the August-October period (2010). To characterize the outbreak and compare the genetic diversity of CA24v, which was determined to be the cause of the outbreak, the epidemiology and the molecular characterization of CA24v were analyzed in this study.</p> <p>Results</p> <p>A total of 69,635 cases were reported in the outbreak. 73.5% of index cases originated from students, children in kindergarten and factory workers, with the ≦ 9 age group at the highest risk. The male to female ratio was 1.84:1 among 0-19 years. 56 conjunctival swabs were collected to identify the causative agent from five cities with the AHC outbreak. 30 virus strains were isolated, and two of the genomes had the highest identity values (95.8%) with CA24v genomes. Four CA24v genotypes were identified by phylogenetic analysis for the VP1 and 3C regions. CA24v which caused the outbreak belonged to genotype IV. Furthermore, full nucleotide sequences for four representative isolates in 2010 and 2007 were determined and compared. 20 aa mutations, two nt insertions and one nt deletion were observed in the open reading frame, with 5'- and 3'- UTR respectively between them.</p> <p>Conclusions</p> <p>CA24v was determined to be the pathogen causing the outbreak and belongs to genotype IV. VP1 is more informative than 3C<sup>Pro </sup>for describing molecular epidemiology and we hypothesize that accumulative mutations may have promoted the outbreak.</p

    First Succinylome Profiling of Vibrio alginolyticus Reveals Key Role of Lysine Succinylation in Cellular Metabolism and Virulence

    Get PDF
    Recent studies have shown that a key strategy of many pathogens is to use post-translational modification (PTMs) to modulate host factors critical for infection. Lysine succinylation (Ksuc) is a major PTM widespread in prokaryotic and eukaryotic cells, and is associated with the regulation of numerous important cellular processes. Vibrio alginolyticus is a common pathogen that causes serious disease problems in aquaculture. Here we used the affinity enrichment method with LC-MS/MS to report the first identification of 2082 lysine succinylation sites on 671 proteins in V. alginolyticus, and compared this with the lysine acetylation of V. alginolyticus in our previous work. The Ksuc modification of SodB and PEPCK proteins were further validated by Co-immunoprecipitation combined with Western blotting. Bioinformatics analysis showed that the identified lysine succinylated proteins are involved in various biological processes and central metabolism pathways. Moreover, a total of 1,005 (25.4%) succinyl sites on 502 (37.3%) proteins were also found to be acetylated, which indicated that an extensive crosstalk between acetylation and succinylation in V. alginolyticus occurs, especially in three central metabolic pathways: glycolysis/gluconeogenesis, TCA cycle, and pyruvate metabolism. Furthermore, we found at least 50 (7.45%) succinylated virulence factors, including LuxS, Tdh, SodB, PEPCK, ClpP, and the Sec system to play an important role in bacterial virulence. Taken together, this systematic analysis provides a basis for further study on the pathophysiological role of lysine succinylation in V. alginolyticus and provides targets for the development of attenuated vaccines

    Genetic characterization of wild-type measles viruses isolated in China, 2006-2007

    Get PDF
    Molecular characterization of wild-type measles viruses in China during 1995-2004 demonstrated that genotype H1 was endemic and widely distributed throughout the country. H1-associated cases and outbreaks caused a resurgence of measles beginning in 2005. A total of 210,094 measles cases and 101 deaths were reported by National Notifiable Diseases Reporting System (NNDRS) and Chinese Measles Laboratory Network (LabNet) from 2006 to 2007, and the incidences of measles were 6.8/100,000 population and 7.2/100,000 population in 2006 and 2007, respectively. Five hundred and sixty-five wild-type measles viruses were isolated from 24 of 31 provinces in mainland China during 2006 and 2007, and all of the wild type virus isolates belonged to cluster 1 of genotype H1. These results indicated that H1-cluster 1 viruses were the predominant viruses circulating in China from 2006 to 2007. This study contributes to previous efforts to generate critical baseline data about circulating wild-type measles viruses in China that will allow molecular epidemiologic studies to help measure the progress made toward China's goal of measles elimination by 2012

    Measles Resurgence Associated with Continued Circulation of Genotype H1 Viruses in China, 2005

    Get PDF
    Measles morbidity and mortality decreased significantly after measles vaccine was introduced into China in 1965. From 1995 to 2004, average annual measles incidence decreased to 5.6 cases per 100,000 population following the establishment of a national two-dose regimen. Molecular characterization of wild-type measles viruses demonstrated that genotype H1 was endemic and widely distributed throughout the country in China during 1995-2004. A total of 124,865 cases and 55 deaths were reported from the National Notifiable Diseases Reporting System (NNDRS) in 2005, which represented a 69.05% increase compared with 2004. Over 16,000 serum samples obtained from 914 measles outbreaks and the measles IgM positive rate was 81%. 213 wild-type measles viruses were isolated from 18 of 31 provinces in China during 2005, and all of the isolates belonged to genotype H1. The ranges of the nucleotide sequence and predicted amino acid sequence homologies of the 213 genotype H1 strains were 93.4%-100% and 90.0%-100%, respectively. H1-associated cases and outbreaks caused the measles resurgence in China in 2005. H1 genotype has the most inner variation within genotype, it could be divided into 2 clusters, and cluster 1 viruses were predominant in China throughout 2005

    Single Endemic Genotype of Measles Virus Continuously Circulating in China for at Least 16 Years

    Get PDF
    The incidence of measles in China from 1991 to 2008 was reviewed, and the nucleotide sequences from 1507 measles viruses (MeV) isolated during 1993 to 2008 were phylogenetically analyzed. The results showed that measles epidemics peaked approximately every 3 to 5 years with the range of measles cases detected between 56,850 and 140,048 per year. The Chinese MeV strains represented three genotypes; 1501 H1, 1 H2 and 5 A. Genotype H1 was the predominant genotype throughout China continuously circulating for at least 16 years. Genotype H1 sequences could be divided into two distinct clusters, H1a and H1b. A 4.2% average nucleotide divergence was found between the H1a and H1b clusters, and the nucleotide sequence and predicted amino acid homologies of H1a viruses were 92.3%–100% and 84.7%–100%, H1b were 97.1%–100% and 95.3%–100%, respectively. Viruses from both clusters were distributed throughout China with no apparent geographic restriction and multiple co-circulating lineages were present in many provinces. Cluster H1a and H1b viruses were co-circulating during 1993 to 2005, while no H1b viruses were detected after 2005 and the transmission of that cluster has presumably been interrupted. Analysis of the nucleotide and predicted amino acid changes in the N proteins of H1a and H1b viruses showed no evidence of selective pressure. This study investigated the genotype and cluster distribution of MeV in China over a 16-year period to establish a genetic baseline before MeV elimination in Western Pacific Region (WPR). Continuous and extensive MeV surveillance and the ability to quickly identify imported cases of measles will become more critical as measles elimination goals are achieved in China in the near future. This is the first report that a single endemic genotype of measles virus has been found to be continuously circulating in one country for at least 16 years

    Global monitoring of antimicrobial resistance based on metagenomics analyses of urban sewage

    Get PDF
    Antimicrobial resistance (AMR) is a serious threat to global public health, but obtaining representative data on AMR for healthy human populations is difficult. Here, we use meta-genomic analysis of untreated sewage to characterize the bacterial resistome from 79 sites in 60 countries. We find systematic differences in abundance and diversity of AMR genes between Europe/North-America/Oceania and Africa/Asia/South-America. Antimicrobial use data and bacterial taxonomy only explains a minor part of the AMR variation that we observe. We find no evidence for cross-selection between antimicrobial classes, or for effect of air travel between sites. However, AMR gene abundance strongly correlates with socio-economic, health and environmental factors, which we use to predict AMR gene abundances in all countries in the world. Our findings suggest that global AMR gene diversity and abundance vary by region, and that improving sanitation and health could potentially limit the global burden of AMR. We propose metagenomic analysis of sewage as an ethically acceptable and economically feasible approach for continuous global surveillance and prediction of AMR.Peer reviewe

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals &lt;1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data
    corecore