1,116 research outputs found

    Effect of selective post-aging treatment on subsurface damage of quasicrystal reinforced Al composite manufactured by selective laser melting

    Get PDF
    In this work, Al-Fe-Cr quasicrystal reinforced Al matrix composite was in-situ prepared by using selective laser melting from powder mixture of Al-Cu-Fe-Cr quasicrystal and pure Al. The effect of selective post-aging treatment on microstructure and mechanical properties were determined with focus on the metastable phases. The microstructural analysis, which was determined by X-ray diffraction and scanning electron microscopy, indicates that the Al-based intermetallic is precipitated from supersaturated α-Al after the aging process. Moreover, the compression tests were performed on the samples in form of dense and lattice structures (50% porosity). The elastic modules of dense and lattice structural samples reduce from 21.3 GPa and 4.4–14.6 GPa and 3.6 GPa by using a low cooling-rated aging process. After aging process, the compressive deformation behavior of dense part changes from elastic-plastic-fracture mode to elastic-plastic-densification mode. On the other hand, the failure mechanism of lattice structural sample changes from rapid-single-stage to slow-double-stage with an improvement of the strain at failure

    Structure formation in binary colloids

    Full text link
    A theoretical study of the structure formation observed very recently [Phys. Rev. Lett. 90, 128303 (2003)] in binary colloids is presented. In our model solely the dipole-dipole interaction of the particles is considered, electrohidrodynamic effects are excluded. Based on molecular dynamics simulations and analytic calculations we show that the total concentration of the particles, the relative concentration and the relative dipole moment of the components determine the structure of the colloid. At low concentrations the kinetic aggregation of particles results in fractal structures which show a crossover behavior when increasing the concentration. At high concentration various lattice structures are obtained in a good agreement with experiments.Comment: revtex, 4 pages, figures available from authors due to size problem

    Stationary shapes of deformable particles moving at low Reynolds numbers

    Full text link
    Lecture Notes of the Summer School ``Microswimmers -- From Single Particle Motion to Collective Behaviour'', organised by the DFG Priority Programme SPP 1726 (Forschungszentrum J{\"{u}}lich, 2015).Comment: Pages C7.1-16 of G. Gompper et al. (ed.), Microswimmers - From Single Particle Motion to Collective Behaviour, Lecture Notes of the DFG SPP 1726 Summer School 2015, Forschungszentrum J\"ulich GmbH, Schriften des Forschungszentrums J\"ulich, Reihe Key Technologies, Vol 110, ISBN 978-3-95806-083-

    Safety and Toxicity of Catheter Gene Delivery to the Pulmonary Vasculature in a Patient with Metastatic Melanoma

    Full text link
    Overview summary Transcatheter delivery of HLA-B7 DNA and cationic liposomes into a segment of a pulmonary artery was safely performed in 1 patient with tumor nodules in the lung. No immunologic or organ toxicities were observed. Percutaneous catheter gene delivery has been performed in humans. Further refinements of this approach may lead to useful treatments for a variety of human diseases.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/63196/1/hum.1994.5.9-1089.pd

    Scaling of anisotropy flows in intermediate energy heavy ion collisions

    Get PDF
    Anisotropic flows (v1v_1, v2v_2 and v4v_4) of light nuclear clusters are studied by a nucleonic transport model in intermediate energy heavy ion collisions. The number-of-nucleon scalings of the directed flow (v1v_1) and elliptic flow (v2v_2) are demonstrated for light nuclear clusters. Moreover, the ratios of v4/v22v_4/v_2^2 of nuclear clusters show a constant value of 1/2 regardless of the transverse momentum. The above phenomena can be understood by the coalescence mechanism in nucleonic level and are worthy to be explored in experiments.Comment: Invited talk at "IX International Conference on Nucleus-Nucleus Collisions", Rio de Janeiro, Aug 28- Sept 1, 2006; to appear on the proceeding issue in Nuclear Physics

    In-situ synthesis of aluminum/nano-quasicrystalline Al-Fe-Cr composite by using selective laser melting

    Get PDF
    In this research, Al-Fe-Cr quasicrystal (QC) reinforced Al-based metal matrix composites were in-situ manufactured by using selective laser melting (SLM) from the powder mixture. The parametrical optimization based on our previous work was performed with focus on laser scanning speed. From the optimized parameters, an almost dense (99.7%) free-crack sample was fabricated with an ultra-fine microstructure. A phase transition from decagonal QC Al65Cu25Fe10Cr5 to icosahedral QC Al91Fe4Cr5 could be observed as laser scanning speed decreases. Differential scanning calorimetry curves show that the QC phase is quiet stable until 500 °C. And then, the effects of annealing temperature on the microstructural and mechanical properties were determined. The results indicate that the recrystallization and growth behavior of α-Al grains could be prevented by QC particle during annealing. Furthermore, the growth of QC particle, which tends to form a porous structure, leads an improvement of Young modulus and decline of ductility

    Scaling of Anisotropic Flow and Momentum-Space Densities for Light Particles in Intermediate Energy Heavy Ion Collisions

    Get PDF
    Anisotropic flows (v2v_2 and v4v_4) of light nuclear clusters are studied by Isospin-Dependent Quantum Molecular Dynamics model for the system of 86^{86}Kr + 124^{124}Sn at intermediate energy and large impact parameters. Number-of-nucleon scaling of the elliptic flow (v2v_2) are demonstrated for the light fragments up to AA = 4, and the ratio of v4/v22v_4/v_2^2 shows a constant value of 1/2. In addition, the momentum-space densities of different clusters are also surveyed as functions of transverse momentum, in-plane transverse momentum and azimuth angle relative to the reaction plane. The results can be essentially described by momentum-space power law. All the above phenomena indicate that there exists a number-of-nucleon scaling for both anisotropic flow and momentum-space densities for light clusters, which can be understood by the coalescence mechanism in nucleonic degree of freedom for the cluster formation.Comment: 8 pages, 3 figures; to be published in Physics Letters

    A Fermi Surface study of Ba1x_{1-x}Kx_{x}BiO3_{3}

    Full text link
    We present all electron computations of the 3D Fermi surfaces (FS's) in Ba1x_{1-x}Kx_{x}BiO3_{3} for a number of different compositions based on the selfconsistent Korringa-Kohn-Rostoker coherent-potential-approximation (KKR-CPA) approach for incorporating the effects of Ba/K substitution. By assuming a simple cubic structure throughout the composition range, the evolution of the nesting and other features of the FS of the underlying pristine phase is correlated with the onset of various structural transitions with K doping. A parameterized scheme for obtaining an accurate 3D map of the FS in Ba1x_{1-x}Kx_{x}BiO3_{3} for an arbitrary doping level is developed. We remark on the puzzling differences between the phase diagrams of Ba1x_{1-x}Kx_{x}BiO3_{3} and BaPbx_{x}Bi1x_{1-x}O3_{3} by comparing aspects of their electronic structures and those of the end compounds BaBiO3_{3}, KBiO3_3 and BaPbO3_3. Our theoretically predicted FS's in the cubic phase are relevant for analyzing high-resolution Compton scattering and positron-annihilation experiments sensitive to the electron momentum density, and are thus amenable to substantial experimental verification.Comment: 12 pages, 7 figures, to appear in Phys. Rev.

    Comparisons of Statistical Multifragmentation and Evaporation Models for Heavy Ion Collisions

    Get PDF
    The results from ten statistical multifragmentation models have been compared with each other using selected experimental observables. Even though details in any single observable may differ, the general trends among models are similar. Thus these models and similar ones are very good in providing important physics insights especially for general properties of the primary fragments and the multifragmentation process. Mean values and ratios of observables are also less sensitive to individual differences in the models. In addition to multifragmentation models, we have compared results from five commonly used evaporation codes. The fluctuations in isotope yield ratios are found to be a good indicator to evaluate the sequential decay implementation in the code. The systems and the observables studied here can be used as benchmarks for the development of statistical multifragmentation models and evaporation codes.Comment: To appear on Euorpean Physics Journal A as part of the Topical Volume "Dynamics and Thermodynamics with Nuclear Degrees of Freedo

    Dynamics of earthquake nucleation process represented by the Burridge-Knopoff model

    Full text link
    Dynamics of earthquake nucleation process is studied on the basis of the one-dimensional Burridge-Knopoff (BK) model obeying the rate- and state-dependent friction (RSF) law. We investigate the properties of the model at each stage of the nucleation process, including the quasi-static initial phase, the unstable acceleration phase and the high-speed rupture phase or a mainshock. Two kinds of nucleation lengths L_sc and L_c are identified and investigated. The nucleation length L_sc and the initial phase exist only for a weak frictional instability regime, while the nucleation length L_c and the acceleration phase exist for both weak and strong instability regimes. Both L_sc and L_c are found to be determined by the model parameters, the frictional weakening parameter and the elastic stiffness parameter, hardly dependent on the size of an ensuing mainshock. The sliding velocity is extremely slow in the initial phase up to L_sc, of order the pulling speed of the plate, while it reaches a detectable level at a certain stage of the acceleration phase. The continuum limits of the results are discussed. The continuum limit of the BK model lies in the weak frictional instability regime so that a mature homogeneous fault under the RSF law always accompanies the quasi-static nucleation process. Duration times of each stage of the nucleation process are examined. The relation to the elastic continuum model and implications to real seismicity are discussed.Comment: Title changed. Changes mainly in abstract and in section 1. To appear in European Physical Journal
    corecore