9,425 research outputs found

    Objective assessment of 3-D medical image registration results using statistical confidence intervals

    Get PDF
    Author name used in this publication: Dagan FengRefereed conference paper2000-2001 > Academic research: refereed > Refereed conference paperVersion of RecordPublishe

    Performance of pilot-scale microbial fuel cells treating wastewater with associated bioenergy production in the Caribbean context

    Get PDF
    Microbial fuel cell (MFC) technology represents a form of renewable energy that generates bioelectricity from what would otherwise be considered a waste stream. MFCs may be ideally suited to the small island developing state (SIDS) context, such as Trinidad and Tobago where seawater as the main electrolyte is readily available and economical renewable and sustainable electricity is also deemed a priority. Hence this project tested two identical laboratory-scaled MFC systems that were specifically designed and developed for the Caribbean regional context. They consisted of two separate chambers, an anaerobic anodic chamber inoculated with wastewater and an aerobic cathodic chamber separated by a proton exchange membrane. Domestic wastewater from two various wastewater treatment plants inflow (after screening) was placed into the anodic chamber, and seawater from the Atlantic Ocean and Gulf of Paria placed into the cathodic chambers respectively with the bacteria present in the wastewater attaching to the anode. Experimental results demonstrated that the bacterial degradation of the wastewaters as substrate induced an electron flow through the electrodes producing bioelectricity whilst simultaneously reducing the organic matter as biochemical oxygen demand and chemical oxygen demand by 30 to 75%. The average bioenergy output for both systems was 84 mW/m² and 96 mW/m² respectively. This study demonstrated the potential for simultaneous bioenergy production and wastewater treatment in the SIDS context

    Experimental study of the normal zone propagation velocity in double-layer 2G-HTS wires by thermal and electrical methods

    Get PDF
    The Normal Zone Propagation Velocity (NZPV) of a double-layer second generation (2G) high temperature superconducting (HTS) wire manufactured by American Superconductor has been measured by electrical and thermal methods, and the results have been compared and discussed. The NZPV values determined by the voltage traces are ranging from 3.8 mm/s at 0.4 Ic to 19.2 mm/s at 0.9 Ic; while from 5.9 mm/s to 18.3 mm/s by the temperature traces. NZPV determined by these two approaches agrees well with each other. Also, NZPV of double-layer YBCO tape is close to that of conventional single-layer superconducting tape.This work was supported in part by the EPSRC under Grant NMZF/064.This is the accepted manuscript. The final version is available from IEEE at http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6963291&sortType%3Dasc_p_Sequence%26filter%3DAND%28p_IS_Number%3A6353170%29%26rowsPerPage%3D50

    Electromagnetic emissions from the IC packaging

    Get PDF
    The EMC and EMI of the IC packaging are becoming increasingly important to modern electronics. Its EMC, SI, and PI have been broadly attested. But electromagnetic radiations from IC packaging and the corresponding EMI were seldom studied. In this paper, the fundamental principles and properties of the electromagnetic radiations caused by vias and traces in IC packagings are carefully investigated. Various radiation mechanisms are analyzed for different representative scenarios. Numerical simulations are employed to support the analyzing results. © 2012 IEEE.published_or_final_versio

    Electromagnetic emissions from the IC packaging

    Get PDF
    The EMC and EMI of the IC packaging are becoming increasingly important to modern electronics. Its EMC, SI, and PI have been broadly attested. But electromagnetic radiations from IC packaging and the corresponding EMI were seldom studied. In this paper, the fundamental principles and properties of the electromagnetic radiations caused by vias and traces in IC packagings are carefully investigated. Various radiation mechanisms are analyzed for different representative scenarios. Numerical simulations are employed to support the analyzing results. © 2012 IEEE.published_or_final_versio

    Global contrast based salient region detection

    Get PDF
    Automatic estimation of salient object regions across images, without any prior assumption or knowledge of the contents of the corresponding scenes, enhances many computer vision and computer graphics applications. We introduce a regional contrast based salient object detection algorithm, which simultaneously evaluates global contrast differences and spatial weighted coherence scores. The proposed algorithm is simple, efficient, naturally multi-scale, and produces full-resolution, high-quality saliency maps. These saliency maps are further used to initialize a novel iterative version of GrabCut, namely SaliencyCut, for high quality unsupervised salient object segmentation. We extensively evaluated our algorithm using traditional salient object detection datasets, as well as a more challenging Internet image dataset. Our experimental results demonstrate that our algorithm consistently outperforms 15 existing salient object detection and segmentation methods, yielding higher precision and better recall rates. We also show that our algorithm can be used to efficiently extract salient object masks from Internet images, enabling effective sketch-based image retrieval (SBIR) via simple shape comparisons. Despite such noisy internet images, where the saliency regions are ambiguous, our saliency guided image retrieval achieves a superior retrieval rate compared with state-of-the-art SBIR methods, and additionally provides important target object region information

    Discrete element modelling and cavity expansion analysis of cone penetration testing

    Get PDF
    This paper uses the discrete element method (DEM) in three dimensions to simulate cone penetration testing (CPT) of granular materials in a calibration chamber. Several researchers have used different numerical techniques such as strain path methods and finite element methods to study CPT problems. The DEM is a useful alternative tool for studying cone penetration problems because of its ability to provide micro mechanical insight into the behaviour of granular materials and cone penetration resistance. A 30° chamber segment and a particle refinement method were used for the simulations. Giving constant mass to each particle in the sample was found to reduce computational time significantly, without significantly affecting tip resistance. The effects of initial sample conditions and particle friction coefficient on tip resistance are investigated and found to have an important effect on the tip resistance. Biaxial test simulations using DEM are conducted to obtain the basic granular material properties for obtaining CPT analytical solutions based on continuum mechanics. Macro properties of the samples for different input micro parameters are presented and used to obtain the analytical CPT results. Comparison between the numerical simulations and analytical solutions show good agreement
    corecore