1,525 research outputs found

    Correcting Mandatory Injustice: Judicial Recommendation of Executive Clemency

    Get PDF
    In 1987, the United States political and social systems lost trust in the judiciary and severely limited its authority by enacting the mandatory Federal Sentencing Guidelines. During this period, many judges were forced to impose sentences they viewed as unjust. Trust in the judiciary was restored in 2005, when United States v. Booker made the Sentencing Guidelines advisory. Despite the increase in judicial discretion, however, judges are still unable to correct sentences imposed during the intervening eighteen years because Booker does not apply retroactively. Unfortunately, the executive and legislative branches are similarly unable to provide adequate remedies. Congressional action is insufficient because it is inflexible, time consuming, and generally nonretroactive. Executive clemency appears more promising due to a flexible and broad nature that allows the president and state governors to pardon or commute sentences at will. But executives have become unwilling to use their clemency power, making it an inadequate remedy. This Note proposes a solution that overcomes the limitations of the current system: judicial recommendation of executive clemency. This solution produces three benefits. First, it provides judges with a discretionary tool to reduce disproportionate mandatory sentences. Second, it revitalizes the exercise of clemency by giving it additional legitimacy. Finally, it refocuses clemency grants on the defendant and the facts of the case rather than on political influences. This Note provides eight illustrative criteria for judicial recommendation of executive clemency that, together, combine the characteristics of three modern cases in which the sentencing judges recommended clemency. This Note seeks to explain how and why each criterion might be important, taking into consideration the goals of judicial discretion, executive clemency, and the criminal justice system overall

    Micro-Raman Imaging of Isomeric Segregation in Small-Molecule Organic Semiconductors

    Get PDF
    Charge transport in organic semiconductors is highly sensitive to film heterogeneity and intermolecular interactions, but probing these properties on the length scales of disorder is often difficult. Here we use micro-Raman spectroscopy to assign vibrational modes of isomerically pure syn and anti 2,8-difluoro-5,11-bis(triethylsilylethynyl)anthradithiophene (diF-TES ADT) by comparing to density functional theory calculations. With polarization-dependent measurements, we determine the orientation of crystallites in pure isomers. In mixed-isomer samples, we observe narrow linewidths and superposition spectra, indicating coexistence of isomerically pure sub-domains on length scales smaller than the probe area. Using the ring breathing modes close to 1300 cm−1 as indicators of the pure isomer crystalline sub-domains, we image their spatial distribution with 200-nm resolution. These results demonstrate the power of micro-Raman spectroscopy for investigating spatial heterogeneities and clarifying the origin of the reduced charge carrier mobility displayed in mixed-isomer diF-TES ADT

    Characterization of candidate genes in inflammatory bowel disease-associated risk loci

    Get PDF
    GWAS have linked SNPs to risk of inflammatory bowel disease (IBD), but a systematic characterization of disease-associated genes has been lacking. Prior studies utilized microarrays that did not capture many genes encoded within risk loci or defined expression quantitative trait loci (eQTLs) using peripheral blood, which is not the target tissue in IBD. To address these gaps, we sought to characterize the expression of IBD-associated risk genes in disease-relevant tissues and in the setting of active IBD. Terminal ileal (TI) and colonic mucosal tissues were obtained from patients with Crohn\u27s disease or ulcerative colitis and from healthy controls. We developed a NanoString code set to profile 678 genes within IBD risk loci. A subset of patients and controls were genotyped for IBD-associated risk SNPs. Analyses included differential expression and variance analysis, weighted gene coexpression network analysis, and eQTL analysis. We identified 116 genes that discriminate between healthy TI and colon samples and uncovered patterns in variance of gene expression that highlight heterogeneity of disease. We identified 107 coexpressed gene pairs for which transcriptional regulation is either conserved or reversed in an inflammation-independent or -dependent manner. We demonstrate that on average approximately 60% of disease-associated genes are differentially expressed in inflamed tissue. Last, we identified eQTLs with either genotype-only effects on expression or an interaction effect between genotype and inflammation. Our data reinforce tissue specificity of expression in disease-associated candidate genes, highlight genes and gene pairs that are regulated in disease-relevant tissue and inflammation, and provide a foundation to advance the understanding of IBD pathogenesis

    Epigenetic age acceleration in adolescence associates with BMI, inflammation and risk score for middle age cardiovascular disease

    Get PDF
    BACKGROUND: 'Accelerated ageing', assessed by adult DNA methylation predicts cardiovascular disease (CVD). Adolescent accelerated aging might predict CVD earlier. We investigated whether epigenetic age acceleration (assessed age 17-years) associated with adiposity/CVD-risk measured (ages 17, 20, 22-years), and projected CVD by middle-age. METHODS: DNA methylation measured in peripheral blood provided 2 estimates of epigenetic age acceleration; intrinsic (IEAA, (preserved across cell types) and extrinsic (EEAA, dependent on cell admixture and methylation levels within each cell type).Adiposity was assessed by anthropometry, ultrasound and DEXA (ages 17, 20, 22 years). CVD-risk factors (lipids, HOMA-IR, blood pressure, inflammatory markers) were assessed at age 17-years. CVD development by age 47 years was calculated by Framingham algorithms. Results are presented as regression coefficients/5-year epigenetic age acceleration (IEAA/EEAA) for adiposity, CVD-risk factors and CVD development. RESULTS: In 995 participants (49.6% female, age 17.3+/-0.6 years), EEAA (/5-years) was associated with increased BMI of 2.4% (95%CI 1.2-3.6%) and 2.4% (0.8-3.9%) at 17 and 22 years, respectively. EEAA was associated with increases of 23% (3-33%) in hsCRP, 10% (4-17%) in interferon-gamma induced protein (IP-10) and 4% (2-6%) in tumour necrosis factor receptor 2 (sTNFR2), adjusted for BMI and HOMA-IR. EEAA(/5-years) results in a 4% increase in hard endpoints of CVD by 47 years old and a 3% increase, after adjustment for conventional risk factors. CONCLUSIONS: Accelerated epigenetic age in adolescence was associated with inflammation, BMI measured 5 years later, and probability of middle-age CVD. Irrespective whether this is cause or effect, assessing epigenetic age might refine disease prediction

    Platelets Regulate Pulmonary Inflammation and Tissue Destruction in Tuberculosis.

    Get PDF
    RATIONALE: Platelets may interact with the immune system in tuberculosis (TB) to regulate human inflammatory responses that lead to morbidity and spread of infection. OBJECTIVES: To identify a functional role of platelets in the innate inflammatory and matrix-degrading response in TB. METHODS: Markers of platelet activation were examined in plasma from 50 patients with TB before treatment and 50 control subjects. Twenty-five patients were followed longitudinally. Platelet-monocyte interactions were studied in a coculture model infected with live, virulent Mycobacterium tuberculosis (M.tb) and dissected using qRT-PCR, Luminex multiplex arrays, matrix degradation assays, and colony counts. Immunohistochemistry detected CD41 (cluster of differentiation 41) expression in a pulmonary TB murine model, and secreted platelet factors were measured in BAL fluid from 15 patients with TB and matched control subjects. MEASUREMENTS AND MAIN RESULTS: Five of six platelet-associated mediators were upregulated in plasma of patients with TB compared with control subjects, with concentrations returning to baseline by Day 60 of treatment. Gene expression of the monocyte collagenase MMP-1 (matrix metalloproteinase-1) was upregulated by platelets in M.tb infection. Platelets also enhanced M.tb-induced MMP-1 and -10 secretion, which drove type I collagen degradation. Platelets increased monocyte IL-1 and IL-10 and decreased IL-12 and MDC (monocyte-derived chemokine; also known as CCL-22) secretion, as consistent with an M2 monocyte phenotype. Monocyte killing of intracellular M.tb was decreased. In the lung, platelets were detected in a TB mouse model, and secreted platelet mediators were upregulated in human BAL fluid and correlated with MMP and IL-1β concentrations. CONCLUSIONS: Platelets drive a proinflammatory, tissue-degrading phenotype in TB
    • …
    corecore