8 research outputs found

    Effects of long-term chlorimuron-ethyl application on the diversity and antifungal activity of soil Pseudomonas spp. in a soybean field in Northeast China

    No full text
    The herbicide chlorimuron-ethyl has been applied widely for weed control in farmland, especially in soybean fields in China over the past decade, but the chronic effects of this herbicide on soil microorganisms, particularly Pseudomonas spp., is not well understood. Taking a continuously cropped soybean field in the town of Fuyuan-a soybean production base of Heilongjiang Province in Northeast China-as a case study, soil samples were collected from plots having received 0-, 5-, and 10-year applications of chlorimuron-ethyl (30 g active component of chlorimuron-ethyl/ha/year) to study the abundance and diversity of Pseudomonas spp. Meanwhile, an in vitro assay was used to examine the antifungal activities of isolated Pseudomonas spp. against soil-borne pathogens (Fusarium graminearum, Fusarium oxysporum, and Rhizoctonia solani) causing soybean root rot disease. The production of siderophore, hydrogen cyanide (HCN), and lytic enzymes (cellulase, pectinase, and chitinase) by Pseudomonas spp. was also investigated. With 5- and 10- year chlorimuron-ethyl application, the numbers of soil Pseudomonas spp. decreased from 121 x 10(2) CFU/g dry soil in the control to 40 x 10(2) CFU/g dry soil and 13 x 10(2) CFU/g dry soil, and the Shannon index values decreased from 6.23 to 3.71 and 1.73, respectively. The numbers of antifungal Pseudomonas spp. also decreased, and the proportions of Pseudomonas spp. with antifungal activities against the different test pathogens altered. All the antifungal Pseudomonas spp. could produce siderophore and HCN but not lytic enzymes. The results suggest that long-term application of chlorimuron-ethyl in continuously cropped soybean field had negative effects on the abundance and diversity of soil Pseudomonas spp., including species with different antifungal activities against pathogens. Siderophore and HCN rather than lytic enzymes formed the antifungal metabolites of Pseudomonas spp., and the number of antifungal Pseudomonas that can produce siderophore and HCN decreased markedly under application of chlorimuron-ethyl, especially after 10-year application.The herbicide chlorimuron-ethyl has been applied widely for weed control in farmland, especially in soybean fields in China over the past decade, but the chronic effects of this herbicide on soil microorganisms, particularly Pseudomonas spp., is not well understood. Taking a continuously cropped soybean field in the town of Fuyuan-a soybean production base of Heilongjiang Province in Northeast China-as a case study, soil samples were collected from plots having received 0-, 5-, and 10-year applications of chlorimuron-ethyl (30 g active component of chlorimuron-ethyl/ha/year) to study the abundance and diversity of Pseudomonas spp. Meanwhile, an in vitro assay was used to examine the antifungal activities of isolated Pseudomonas spp. against soil-borne pathogens (Fusarium graminearum, Fusarium oxysporum, and Rhizoctonia solani) causing soybean root rot disease. The production of siderophore, hydrogen cyanide (HCN), and lytic enzymes (cellulase, pectinase, and chitinase) by Pseudomonas spp. was also investigated. With 5- and 10- year chlorimuron-ethyl application, the numbers of soil Pseudomonas spp. decreased from 121 x 10(2) CFU/g dry soil in the control to 40 x 10(2) CFU/g dry soil and 13 x 10(2) CFU/g dry soil, and the Shannon index values decreased from 6.23 to 3.71 and 1.73, respectively. The numbers of antifungal Pseudomonas spp. also decreased, and the proportions of Pseudomonas spp. with antifungal activities against the different test pathogens altered. All the antifungal Pseudomonas spp. could produce siderophore and HCN but not lytic enzymes. The results suggest that long-term application of chlorimuron-ethyl in continuously cropped soybean field had negative effects on the abundance and diversity of soil Pseudomonas spp., including species with different antifungal activities against pathogens. Siderophore and HCN rather than lytic enzymes formed the antifungal metabolites of Pseudomonas spp., and the number of antifungal Pseudomonas that can produce siderophore and HCN decreased markedly under application of chlorimuron-ethyl, especially after 10-year application

    Enhancing functional expression of L-glycerophosphate oxidase in Escherichia coli by controlling the expression rate

    No full text
    Heterologous expression of proteins often pursues high expression levels, but it can easily result in misfolding and loss of biological function. L-α-glycerophosphate oxidase (GlpO) is a flavin adenine dinucleotide (FAD)-dependent oxidase which is widely used in the clinical determination of triglycerides. We found that the total enzymatic activity of GlpO expressed in Escherichia coli (E. coli) was extremely low, probably due to the absence of FAD cofactors and the misfolding of GlpO at a high synthesis rate. Therefore, decreasing the expression rate was used to improve the activity of GlpO. The specific activity of GlpO expressed on the pUC19 vector with lac promotor was approximately 30 times higher than that expressed on the pET28a vector with T7 promotor, but the expression levels of GlpO on the two vectors were completely opposite. It indicated that the specific activity of GlpO was increased as the expression level decreased. However, too low expression greatly influences the total amount and activity of the functional enzyme. In order to resolve this problem, two new plasmids, GlpO-CG4 and GlpO-CG6, were constructed by inserting 4 or 6 nucleotides, respectively, between the ribosome binding site (RBS) and the start code (ATG) on pET28a. Compared with the expression on the GlpO-pET vector, the expression rates of GlpO on the GlpO-CG4 and GlpO-CG6 were dramatically decreased. The total activity of GlpO expressed on GlpO-CG6 was 11 times and 1.5 times higher than that expressed on the GlpO-pET and GlpO-pUC, respectively. Results suggest that the activity of GlpO can be improved by decreasing the expression rate.&nbsp

    Recent Advances in Half-life Extension Strategies for Therapeutic Peptides and Proteins

    No full text
    corecore