101 research outputs found

    Influence of green technology, tourism, and inclusive financial development on ecological sustainability: exploring the path toward green revolution

    Get PDF
    This study demonstrates the linkages between green technological innovations, sustainable tourism, financial development, economic growth, and ecological sustainability using China’s regional data from 2000 to 2019. The study applies the novel estimation technique, Quantile Autoregressive Distributive Lag (QARDL) approach to examine long-run and short-run relationships between the stated variables. The initial findings confirm non-linearity in the data verified through J-B test statistics. It approves the implication of QARDL estimation for exploring ecological sustainability trends over the study period. The study outcomes confirm that tourism and green technology innovation assists in reducing ecological footprints in China in the long run. Moreover, financial development and economic growth reflect a direct role towards more ecological footprints; therefore, the sustainability dimension has been missing both in financial development and growth. Furthermore, the results in the short run cover the same phenomenon and confirm that ecological innovations and tourism would help in sustaining the natural environment. The study outcomes demonstrate that government officials in China should specifically implement long-term policies to support the natural environment from adverse shocks of more financial development and economic growth

    Meat and bone meal stimulates microbial diversity and suppresses plant pathogens in asparagus straw composting

    Get PDF
    Meat and bone meal (MBM), as slaughterhouse waste, is a potential biostimulating agent, but its efficiency and reliability in composting are largely unknown. To access the MBM application to the composting process of asparagus straw rice, we followed the composting process for 60 days in 220-L composters and another 180 days in 20-L buckets in treatments applied with MBM or urea. The microbial succession was investigated by high-throughput sequencing. Compared with urea treatments, MBM addition stabilized pH and extended the thermophilic phase for 7 days. The germination index of MBM treatments was 24.76% higher than that of urea treatments. MBM also promoted higher microbial diversity and shifted community compositions. Organic matter and pH were the most significant factors that influence the bacterial and fungal community structure. At the genus level, MBM enriched relative abundances of organic matter-degrading bacteria (Alterococcus) and lignocellulose-degrading fungi (Trichoderma), as well as lignocellulolytic enzyme activities. Notably, MBM addition decreased sum abundances of plant pathogenic fungi of Phaeoacremonium, Acremonium, and Geosmithia from 17.27 to 0.11%. This study demonstrated the potential of MBM as an effective additive in asparagus straw composting, thus providing insights into the development of new industrial aerobic fermentation.Peer reviewe

    Controllable synthesis of one-dimensional isolated Ni 0.5 Zn 0.5 Fe 2 O 4 microtubes for application as catalyst support in RF heated reactors

    Get PDF
    One-dimensional isolated Ni0.5Zn0.5Fe2O4 microtubes have been prepared via a template assisted sol–gel method. Temperature dependence of the structural and magnetic properties was studied via XRD, N2 adsorption, SEM, TEM, and VSM. An increase in calcination temperature from 873 to 1273 K caused a decrease in the specific surface area from 80.7 to 17.0 m2/g due to an increase of the grain size from 25.3 to 112 nm. All samples demonstrated anomalous coercivity behavior due to mechanical stresses acting on their domain walls. The porous microtubes calcined at 1073 K have a mean external diameter of 3.7 μm with a length-to-diameter ratio exceeding 12. The microtubes calcined at 973 K have the highest coercivity of 88.1 Oe and demonstrated the largest specific heating rate of 4.36 W/g in a radiofrequency field at 295 kHz

    Preoperative Alfa-Fetoprotein and Fibrinogen Predict Hepatocellular Carcinoma Recurrence After Liver Transplantation Regardless of the Milan Criteria: Model Development with External Validation

    Get PDF
    Background/Aims: Patient selection is critically important in improving the outcomes of liver transplantation for hepatocellular carcinoma. The aim of the current study was to identify biochemical measures that could affect patient prognosis after liver transplantation. Methods: A total of 119 patients receiving liver transplantation for hepatocellular carcinoma were used to construct a model for predicting recurrence. The results were validated using an independent sample of 109 patients from independent hospitals. All subjects in both cohorts met the Hangzhou criteria. Results: Analysis of the discovery cohort revealed an association of recurrence with preoperative fibrinogen and AFP levels. A mathematical model was developed for predicting probability of recurrence within 5 years: Y = logit(P) = -4.595 + 0.824 Ă—fibrinogen concentration (g/L) + 0.641 Ă— AFP score (1 for AFP<=20ng/ml, 2 for 20<AFP<=100ng/ml, 3 for 100<AFP<=200ng/ml, 4 for 200<AFP<=400ng/ml, 5 for AFP> 400ng/ml). At a cutoff score of -0.85, the area under the curve (AUC) was 0.819 in predicting recurrence (vs. 0.655 when using the Milan criteria). In the validation cohort, this model had reasonable performance in predicting 5-year overall survival (68.8% vs. 28.1% in using the -0.85 cutoff, p< 0.001) and disease-free survival (65.7% vs. 25.9%, p< 0.001). The sensitivity and specificity were 77.0% and 62.5%, respectively. The AUC of this newly developed model was similar to that with the Milan criteria (0.698 vs. 0.678). Surprisingly, the DFS in patients with score <= -0.85 under this model but not meeting the Milan criteria was similar to that in patients meeting the Milan criteria (53.8% vs. 60.0%, p=0.380). Conclusions: Preoperative AFP and fibrinogen are useful in predicting recurrence of hepatocellular carcinoma after liver transplantation

    Revealing the superior corrosion protection of the passive film on selective laser melted 316L SS in a phosphate-buffered saline solution

    Get PDF
    This study investigated the passivation behaviour of wrought 316L stainless steel (SS) and 316L manufactured by the Selective Laser Melting (SLM) process in phosphate-buffered saline (PBS). The 3D printing laser power influenced microstructure, passive film and corrosion resistance of SLM 316L SS were studied, and compared with the results of wrought 316L SS. The results indicated that a smaller corrosion current density and improved breakdown potential (Eb) of SLM 316L SS was associated with a higher proportion of Cr2O3 in the passive film at OCP conditions. The Transmission Electron Microscopy (TEM) proved that the passive film on SLM 316L SS was continuous and compact at 600 mV vs. Ag/AgCl applied potential. The increase in the applied potential resulted in a high content of hydroxide being recorded in the passive film. The results also suggest preferential facets of (1 1 0) and abundant grain/sub-grain boundaries for SLM 316L SS, as well as the increased work of separation and growth rate of the passive film from the substrate. Wrought 316L SS demonstrated preferred facets of (1 1 1)-Îł and larger grains. There are confirmed via X-Ray Diffraction (XRD), Electron Backscatter Diffraction (EBSD) and the first-principle calculation

    The 5th International Conference on Biomedical Engineering and Biotechnology (ICBEB 2016)

    Get PDF
    • …
    corecore