149 research outputs found
Non-Markovian finite-temperature two-time correlation functions of system operators of a pure-dephasing model
We evaluate the non-Markovian finite-temperature two-time correlation
functions (CF's) of system operators of a pure-dephasing spin-boson model in
two different ways, one by the direct exact operator technique and the other by
the recently derived evolution equations, valid to second order in the
system-environment interaction Hamiltonian. This pure-dephasing spin-boson
model that is exactly solvable has been extensively studied as a simple
decoherence model. However, its exact non-Markovian finite-temperature two-time
system operator CF's, to our knowledge, have not been presented in the
literature. This may be mainly due to the fact, illustrated in this article,
that in contrast to the Markovian case, the time evolution of the reduced
density matrix of the system (or the reduced quantum master equation) alone is
not sufficient to calculate the two-time system operator CF's of non-Markovian
open systems. The two-time CF's obtained using the recently derived evolution
equations in the weak system-environment coupling case for this non-Markovian
pure-dephasing model happen to be the same as those obtained from the exact
evaluation. However, these results significantly differ from the non-Markovian
two-time CF's obtained by wrongly directly applying the quantum regression
theorem (QRT), a useful procedure to calculate the two-time CF's for
weak-coupling Markovian open systems. This demonstrates clearly that the
recently derived evolution equations generalize correctly the QRT to
non-Markovian finite-temperature cases. It is believed that these evolution
equations will have applications in many different branches of physics.Comment: To appear in Phys. Rev.
Implementation of a double scattering nozzle for Monte Carlo recalculation of proton plans with variable relative biological effectiveness
A constant relative biological effectiveness (RBE) of 1.1 is currently used in clinical proton therapy. However, the RBE varies with factors such as dose level, linear energy transfer (LET) and tissue type. Multiple RBE models have been developed to account for this biological variation. To enable recalculation of patients treated with double scattering (DS) proton therapy, including LET and variable RBE, we implemented and commissioned a Monte Carlo (MC) model of a DS treatment nozzle. The main components from the IBA nozzle were implemented in the FLUKA MC code. We calibrated and verified the following entities to experimental measurements: range of pristine Bragg peaks (PBPs) and spread-out Bragg peaks (SOBPs), energy spread, lateral profiles, compensator range degradation, and absolute dose. We recalculated two patients with different field setups, comparing FLUKA vs. treatment planning system (TPS) dose, also obtaining LET and variable RBE doses. We achieved good agreement between FLUKA and measurements. The range differences between FLUKA and measurements were for the PBPs within ±0.9 mm (83% ≤ 0.5 mm), and for SOBPs ±1.6 mm (82% ≤ 0.5 mm). The differences in modulation widths were below 5 mm (79% ≤ 2 mm). The differences in the distal dose fall off (D80%–D20%) were below 0.5 mm for all PBPs and the lateral penumbras diverged from measurements by less than 1 mm. The mean dose difference (RBE = 1.1) in the target between the TPS and FLUKA were below 0.4% in a three-field plan and below 1.4% in a four-field plan. A dose increase of 9.9% and 7.2% occurred when using variable RBE for the two patients, respectively. We presented a method to recalculate DS proton plans in the FLUKA MC code. The implementation was used to obtain LET and variable RBE dose and can be used for investigating variable RBE for previously treated patients.publishedVersio
Nanomechanical-resonator-assisted induced transparency in a Cooper-pair-box system
We propose a scheme to demonstrate the electromagnetically induced
transparency (EIT) in a system of a superconducting Cooper-pair box coupled to
a nanomechanical resonator. In this scheme, the nanomechanical resonator plays
an important role to contribute additional auxiliary energy levels to the
Cooper-pair box so that the EIT phenomenon could be realized in such a system.
We call it here resonator-assisted induced transparency (RAIT). This RAIT
technique provides a detection scheme in a real experiment to measure physical
properties, such as the vibration frequency and the decay rate, of the coupled
nanomechanical resonator.Comment: To appear in New Journal of Physics: Special Issue "Mechanical
Systems at the Quantum Limit
Probing flavor changing interactions in hadron collisions
The subprocess in the two-Higgs-doublet model with
flavor-changing scalar couplings is examined at the one loop level. With
perturbative QCD factorization theorem, the corresponding cross sections for
hadron-hadron collisions are computed numerically. The results are applicable
to the whole mass range of the weakly coupled Higgs bosons. In case we could
efficiently exclude the severe backgrounds of the
production signal, probing the flavor-changing top-charm-scalar vertex at
hadron colliders would be very promising and accessible experimentally.Comment: LaTex file, 14 pages, 8 EPS figure
HuR cytoplasmic expression is associated with increased cyclin A expression and poor outcome with upper urinary tract urothelial carcinoma
BACKGROUND: HuR is an RNA-binding protein that post-transcriptionally modulates the expressions of various target genes implicated in carcinogenesis, such as CCNA2 encoding cyclin A. No prior study attempted to evaluate the significance of HuR expression in a large cohort with upper urinary tract urothelial carcinomas (UTUCs). METHODS: In total, 340 cases of primary localized UTUC without previous or concordant bladder carcinoma were selected. All of these patients received ureterectomy or radical nephroureterectomy with curative intents. Pathological slides were reviewed, and clinical findings were collected. Immunostaining for HuR and cyclin A was performed and evaluated by using H-score. The results of cytoplasmic HuR and nuclear cyclin A expressions were correlated with disease-specific survival (DSS), metastasis-free survival (MeFS), urinary bladder recurrence-free survival (UBRFS), and various clinicopathological factors. RESULTS: HuR cytoplasmic expression was significantly related to the pT status, lymph node metastasis, a higher histological grade, the pattern of invasion, vascular and perineurial invasion, and cyclin A expression (p = 0.005). Importantly, HuR cytoplasmic expression was strongly associated with a worse DSS (p < 0.0001), MeFS (p < 0.0001), and UBRFS (p = 0.0370) in the univariate analysis, and the first two results remained independently predictive of adverse outcomes (p = 0.038, relative risk [RR] = 1.996 for DSS; p = 0.027, RR = 1.880 for MeFS). Cyclin A nuclear expression was associated with a poor DSS (p = 0.0035) and MeFS (p = 0.0015) in the univariate analysis but was not prognosticatory in the multivariate analyses. High-risk patients (pT3 or pT4 with/without nodal metastasis) with high HuR cytoplasmic expression had better DSS if adjuvant chemotherapy was performed (p = 0.015). CONCLUSIONS: HuR cytoplasmic expression was correlated with adverse phenotypes and cyclin A overexpression and also independently predictive of worse DSS and MeFS, suggesting its roles in tumorigenesis or carcinogenesis and potentiality as a prognostic marker of UTUC. High HuR cytoplasmic expression might identify patients more likely to be beneficial for adjuvant chemotherapy
Cross-National Differences in Victimization : Disentangling the Impact of Composition and Context
Varying rates of criminal victimization across countries are assumed to be the outcome of countrylevel structural constraints that determine the supply ofmotivated o¡enders, as well as the differential composition within countries of suitable targets and capable guardianship. However, previous empirical tests of these ‘compositional’ and ‘contextual’ explanations of cross-national di¡erences
have been performed upon macro-level crime data due to the unavailability of comparable individual-level data across countries. This limitation has had two important consequences for cross-national crime research. First, micro-/meso-level mechanisms underlying cross-national differences cannot be truly inferred from macro-level data. Secondly, the e¡ects of contextual measures (e.g. income inequality) on crime are uncontrolled for compositional heterogeneity. In this
paper, these limitations are overcome by analysing individual-level victimization data across 18 countries from the International CrimeVictims Survey. Results from multi-level analyses on theft and violent victimization indicate that the national level of income inequality is positively related to risk, independent of compositional (i.e. micro- and meso-level) di¡erences. Furthermore, crossnational variation in victimization rates is not only shaped by di¡erences in national context, but
also by varying composition. More speci¢cally, countries had higher crime rates the more they consisted of urban residents and regions with lowaverage social cohesion.
Diagnostic Value of EBUS-TBNA for Lung Cancer with Non-Enlarged Lymph Nodes: A Study in a Tuberculosis-Endemic Country
BACKGROUND: In tuberculosis (TB)-endemic areas, contrast-enhanced computed tomography (CT) and positron emission tomography (PET) findings of lung cancer patients with non-enlarged lymph nodes are frequently discrepant. Endobronchial ultrasound-guided transbronchial aspiration (EBUS-TBNA) enables real-time nodal sampling, and thereby improves nodal diagnosis accuracy. This study aimed to compare the accuracy of nodal diagnosis by using EBUS-TBNA, and PET. METHODS: We studied 43 lung cancer patients with CT-defined non-enlarged mediastinal and hilar lymph nodes and examined 78 lymph nodes using EBUS-TBNA. RESULTS: The sensitivity, specificity, positive predictive value, and negative predictive value of EBUS-TBNA were 80.6%, 100%, 100%, and 85.7%, respectively. PET had low specificity (18.9%) and a low positive predictive value (44.4%). The diagnostic accuracy of EBUS-TBNA was higher than that of PET (91% vs. 47.4%; p<0.001). Compared to CT-based nodal assessment, PET yielded a positive diagnostic impact in 36.9% nodes, a negative diagnostic impact in 46.2% nodes, and no diagnostic impact in 16.9% nodes. Patients with lymph nodes showing negative PET diagnostic impact had a high incidence of previous pulmonary TB. Multivariate analysis indicated that detection of hilar nodes on PET was an independent predictor of negative diagnostic impact of PET. CONCLUSION: In a TB-endemic area with a condition of CT-defined non-enlarged lymph node, the negative diagnostic impact of PET limits its clinical usefulness for nodal staging; therefore, EBUS-TBNA, which facilitates direct diagnosis, is preferred
Recommended from our members
An inhibitor of oxidative phosphorylation exploits cancer vulnerability.
Metabolic reprograming is an emerging hallmark of tumor biology and an actively pursued opportunity in discovery of oncology drugs. Extensive efforts have focused on therapeutic targeting of glycolysis, whereas drugging mitochondrial oxidative phosphorylation (OXPHOS) has remained largely unexplored, partly owing to an incomplete understanding of tumor contexts in which OXPHOS is essential. Here, we report the discovery of IACS-010759, a clinical-grade small-molecule inhibitor of complex I of the mitochondrial electron transport chain. Treatment with IACS-010759 robustly inhibited proliferation and induced apoptosis in models of brain cancer and acute myeloid leukemia (AML) reliant on OXPHOS, likely owing to a combination of energy depletion and reduced aspartate production that leads to impaired nucleotide biosynthesis. In models of brain cancer and AML, tumor growth was potently inhibited in vivo following IACS-010759 treatment at well-tolerated doses. IACS-010759 is currently being evaluated in phase 1 clinical trials in relapsed/refractory AML and solid tumors
Magnetic Fields toward Ophiuchus-B Derived from SCUBA-2 Polarization Measurements
We present the results of dust emission polarization measurements of Ophiuchus-B (Oph-B) carried out using the Submillimetre Common-User Bolometer Array 2 (SCUBA-2) camera with its associated polarimeter (POL-2) on the James Clerk Maxwell Telescope in Hawaii. This work is part of the B-fields in Star-forming Region Observations survey initiated to understand the role of magnetic fields in star formation for nearby star-forming molecular clouds. We present a first look at the geometry and strength of magnetic fields in Oph-B. The field geometry is traced over ~0.2 pc, with clear detection of both of the sub-clumps of Oph-B. The field pattern appears significantly disordered in sub-clump Oph-B1. The field geometry in Oph-B2 is more ordered, with a tendency to be along the major axis of the clump, parallel to the filamentary structure within which it lies. The degree of polarization decreases systematically toward the dense core material in the two sub-clumps. The field lines in the lower density material along the periphery are smoothly joined to the large-scale magnetic fields probed by NIR polarization observations. We estimated a magnetic field strength of 630 ± 410 μG in the Oph-B2 sub-clump using a Davis–Chandrasekhar–Fermi analysis. With this magnetic field strength, we find a mass-to-flux ratio λ = 1.6 ± 1.1, which suggests that the Oph-B2 clump is slightly magnetically supercritical
- …