9 research outputs found

    SPATIO-TEMPORAL VARIATION OF MERCURY IN BIDYADHARI RIVER OF SUNDARBAN DELTA, INDIA

    Get PDF
    Bidyadhari river originates in Nadia district of West Bengal, India and then flows through North 24 Parganas district and now serves as a sewage and excess rainwater outlet from the city of Kolkata and adjacent area, which ultimately empties at the Bay of Bengal through the Indian Sundarban delta. Four different stations situated around the course of the river at considerable distances have been selected from the outfall of sewage canals at Kulti-Ghushighata (S1), where metropolitan sewages discharged and mixed up into water of Bidyadhari river, which ultimately carried through this river via stations Malancha (S2), Kanmari (S3) to Dhamakhali (S4), just before the river confluences with the larger Raimangal river at northern Sundarban delta. This study was conducted to estimate total mercury (Hg) concentration in waters (during high tides and ebb tides) and sediments of Bidyadhari river in pre-monsoon, monsoon and post-monsoon seasons during the period from March, 2012 to February, 2013 at those stations. It is revealed from the estimated data that agricultural runoff, sewage, effluents from various industries and Kolkata metropolitan, Salt Lake City and adjacent areas of North 24 Parganas district carried and discharged in Bidyadhari river through sewage canals are not so high in mercury content for sediment contamination but alarming in respect of water quality, which crosses the permissible limit of Hg for consumption (0.001 ppm) in wide range of areas at Kanmari and Dhamakhali around the estuary. Enhancement of Hg level in this river water and transportation of the metal through tidal effects to and fro mangrove land of Sundarban may be dangerous for aquatic lives and supposed to be grave concern for the ecology of the Sundarban delta including human

    Extraction of Stevioside from Stevia Rebaudiana Leaves Using Cellulase

    Get PDF
    Stevioside is a diterpene glycoside present in Stevia Rebaudiana leaves that has the ability to sweeten at rated between 70 to 350 times than sucrose (0.4% w/v). It has no calorific value. Unlike many low calorie sweeteners, stevioside is stable at high temperature. The objective of this research is to extract stevioside from stevia rebaudiana leaves by using cellulase from Aspergillus Niger. Acetate buffer and ethanol were used as a medium for enzyme and as a solvent, respectively. In this present study, the enzymatic extraction of stevioside from stevia rebaudiana leaves was carried out using cellulase with various parameters that affect the production of stevioside such as concentration of enzyme, incubation time and temperature. Cellulase was observed to give the highest stevioside yield (16230 ± 0.3 μg/ml) at 40oC. This indicated that the maximum temperature for cellulase activity was 40oC. The results signify that the enzymatic extraction method is an alternative to solvent based stevioside extraction, based on its higher efficiency. Thus, it can be concluded that the extraction of stevioside from Stevia rebaudiana leaves using cellulase can be maximized under the maximum conditions for the cellulase activity where the used of solvent can be minimized in degrading the cell wall Together with the maximum heat and correct combination of the solvent used, a new and efficient way of extracting high yield of stevioside can be obtained

    STUDIES OF PROTEIN SYNTHESIS REGULATION IN ANIMAL CELLS BY RIBOSOME DISSOCIATION FACTOR (DF) AND DOUBLE--STRANDED RNA ACTIVATED PROTEIN SYNTHESIS INHIBITOR (DSI)

    No full text
    The first step in peptide chain initiation in animal cells is the formation of a ternary complex between a specific peptide chain initiation factor (eIF-2), initiator tRNA and GTP, Met-tRNA(,f)(.)eIF-2(.)GTP. The ternary complex (Met-tRNA(,f)(.)eIF-2(.)GTP) formed is transferred to 40S riboso

    Naringin and Naringenin Polyphenols in Neurological Diseases: Understandings from a Therapeutic Viewpoint

    No full text
    The glycosides of two flavonoids, naringin and naringenin, are found in various citrus fruits, bergamots, tomatoes, and other fruits. These phytochemicals are associated with multiple biological functions, including neuroprotective, antioxidant, anticancer, antiviral, antibacterial, anti-inflammatory, antiadipogenic, and cardioprotective effects. The higher glutathione/oxidized glutathione ratio in 3-NP-induced rats is attributed to the ability of naringin to reduce hydroxyl radical, hydroperoxide, and nitrite. However, although progress has been made in treating these diseases, there are still global concerns about how to obtain a solution. Thus, natural compounds can provide a promising strategy for treating many neurological conditions. Possible therapeutics for neurodegenerative disorders include naringin and naringenin polyphenols. New experimental evidence shows that these polyphenols exert a wide range of pharmacological activity; particular attention was paid to neurodegenerative diseases such as Alzheimer’s and Parkinson’s diseases, as well as other neurological conditions such as anxiety, depression, schizophrenia, and chronic hyperglycemic peripheral neuropathy. Several preliminary investigations have shown promising evidence of neuroprotection. The main objective of this review was to reflect on developments in understanding the molecular mechanisms underlying the development of naringin and naringenin as potential neuroprotective medications. Furthermore, the configuration relationships between naringin and naringenin are discussed, as well as their plant sources and extraction methods
    corecore