13 research outputs found

    Early changes in gene expression and inflammatory proteins in systemic juvenile idiopathic arthritis patients on canakinumab therapy

    No full text
    Background: Canakinumab is a human anti-interleukin-1 beta (IL-1 beta) monoclonal antibody neutralizing IL-1 beta-mediated pathways. We sought to characterize the molecular response to canakinumab and evaluate potential markers of response using samples from two pivotal trials in systemic juvenile idiopathic arthritis (SJIA)

    Early changes in gene expression and inflammatory proteins in systemic juvenile idiopathic arthritis patients on canakinumab therapy

    No full text
    BACKGROUND: Canakinumab is a human anti-interleukin-1β (IL-1β) monoclonal antibody neutralizing IL-1β-mediated pathways. We sought to characterize the molecular response to canakinumab and evaluate potential markers of response using samples from two pivotal trials in systemic juvenile idiopathic arthritis (SJIA). METHODS: Gene expression was measured in patients with febrile SJIA and in matched healthy controls by Affymetrix DNA microarrays. Transcriptional response was assessed by gene expression changes from baseline to day 3 using adapted JIA American College of Rheumatology (aACR) response criteria (50 aACR JIA). Changes in pro-inflammatory cytokines IL-6 and IL-18 were assessed up to day 197. RESULTS: Microarray analysis identified 984 probe sets differentially expressed (≥2-fold difference; P < 0.05) in patients versus controls. Over 50% of patients with ≥50 aACR JIA were recognizable by baseline expression values. Analysis of gene expression profiles from patients achieving ≥50 aACR JIA response at day 15 identified 102 probe sets differentially expressed upon treatment (≥2-fold difference; P < 0.05) on day 3 versus baseline, including IL-1β, IL-1 receptors (IL1-R1 and IL1-R2), IL-1 receptor accessory protein (IL1-RAP), and IL-6. The strongest clinical response was observed in patients with higher baseline expression of dysregulated genes and a strong transcriptional response on day 3. IL-6 declined by day 3 (≥8-fold decline; P < 0.0001) and remained suppressed. IL-18 declined on day 57 (≥1.5-fold decline, P ≤ 0.002). CONCLUSIONS: Treatment with canakinumab in SJIA patients resulted in downregulation of innate immune response genes and reductions in IL-6 and clinical symptoms. Additional research is needed to investigate potential differences in the disease mechanisms in patients with heterogeneous gene transcription profiles. TRIAL REGISTRATION: Clinicaltrials.gov: NCT00886769 (trial 1). Registered on 22 April 2009; NCT00889863 (trial 2). Registered on 21 April 2009

    Early changes in gene expression and inflammatory proteins in systemic juvenile idiopathic arthritis patients on canakinumab therapy

    Get PDF
    BACKGROUND: Canakinumab is a human anti-interleukin-1β (IL-1β) monoclonal antibody neutralizing IL-1β-mediated pathways. We sought to characterize the molecular response to canakinumab and evaluate potential markers of response using samples from two pivotal trials in systemic juvenile idiopathic arthritis (SJIA). METHODS: Gene expression was measured in patients with febrile SJIA and in matched healthy controls by Affymetrix DNA microarrays. Transcriptional response was assessed by gene expression changes from baseline to day 3 using adapted JIA American College of Rheumatology (aACR) response criteria (50 aACR JIA). Changes in pro-inflammatory cytokines IL-6 and IL-18 were assessed up to day 197. RESULTS: Microarray analysis identified 984 probe sets differentially expressed (≥2-fold difference; P < 0.05) in patients versus controls. Over 50% of patients with ≥50 aACR JIA were recognizable by baseline expression values. Analysis of gene expression profiles from patients achieving ≥50 aACR JIA response at day 15 identified 102 probe sets differentially expressed upon treatment (≥2-fold difference; P < 0.05) on day 3 versus baseline, including IL-1β, IL-1 receptors (IL1-R1 and IL1-R2), IL-1 receptor accessory protein (IL1-RAP), and IL-6. The strongest clinical response was observed in patients with higher baseline expression of dysregulated genes and a strong transcriptional response on day 3. IL-6 declined by day 3 (≥8-fold decline; P < 0.0001) and remained suppressed. IL-18 declined on day 57 (≥1.5-fold decline, P ≤ 0.002). CONCLUSIONS: Treatment with canakinumab in SJIA patients resulted in downregulation of innate immune response genes and reductions in IL-6 and clinical symptoms. Additional research is needed to investigate potential differences in the disease mechanisms in patients with heterogeneous gene transcription profiles. TRIAL REGISTRATION: Clinicaltrials.gov: NCT00886769 (trial 1). Registered on 22 April 2009; NCT00889863 (trial 2). Registered on 21 April 2009

    Unexpectedly large impact of forest management and grazing on global vegetation biomass

    Get PDF
    Carbon stocks in vegetation have a key role in the climate system1,2,3,4. However, the magnitude, patterns and uncertainties of carbon stocks and the effect of land use on the stocks remain poorly quantified. Here we show, using state-of-the-art datasets, that vegetation currently stores around 450 petagrams of carbon. In the hypothetical absence of land use, potential vegetation would store around 916 petagrams of carbon, under current climate conditions. This difference highlights the massive effect of land use on biomass stocks. Deforestation and other land-cover changes are responsible for 53–58% of the difference between current and potential biomass stocks. Land management effects (the biomass stock changes induced by land use within the same land cover) contribute 42–47%, but have been underestimated in the literature. Therefore, avoiding deforestation is necessary but not sufficient for mitigation of climate change. Our results imply that trade-offs exist between conserving carbon stocks on managed land and raising the contribution of biomass to raw material and energy supply for the mitigation of climate change. Efforts to raise biomass stocks are currently verifiable only in temperate forests, where their potential is limited. By contrast, large uncertainties hinder verification in the tropical forest, where the largest potential is located, pointing to challenges for the upcoming stocktaking exercises under the Paris agreement
    corecore