3,331 research outputs found

    Sleep and Cognition

    Get PDF
    Sleep is an ancestral and primitive behaviour, an important part of life thought to be essential for restoration of body and mind. As adults, we spend approximately a third of our lives asleep and as we progress through life there are certain shifts in sleep architecture, most notably in sleep quantity. These biological or physiological age-dependent changes in sleep are well documented [1], and alongside the shifts in sleep architecture there is an increased susceptibility to certain sleep disorders. Sleep disturbances and sleep deprivation are common in modern society. Most studies show that since the beginning of the century, populations have been subjected to a steady constant decline in the number of hours devoted to sleep. This is due to changes in a variety of environmental and social conditions (e.g. less dependence on daylight for most activities, extended shift work and 24/7 round-the-clock activities

    Spectropolarimetry of the 3.4 micron absorption feature in NGC 1068

    Full text link
    In order to test the silicate-core/organic-mantle model of galactic interstellar dust, we have performed spectropolarimetry of the 3.4 micron C-H bond stretch that is characteristic of aliphatic hydrocarbons, using the nucleus of the Seyfert 2 galaxy, NGC 1068, as a bright, dusty background source. Polarization calculations show that, if the grains in NGC 1068 had the properties assigned by the core-mantle model to dust in the galactic diffuse ISM, they would cause a detectable rise in polarization over the 3.4 micron feature. No such increase is observed. We discuss modifications to the basic core-mantle model, such as changes in grain size or the existence of additional non-hydrocarbon aligned grain populations, which could better fit the observational evidence. However, we emphasize that the absence of polarization over the 3.4 micron band in NGC 1068 - and, indeed, in every line of sight examined to date - can be readily explained by a population of small, unaligned carbonaceous grains with no physical connection to the silicates.Comment: ApJ, accepte

    Removing non-stationary, non-harmonic external interference from gravitational wave interferometer data

    Get PDF
    We describe a procedure to identify and remove a class of non-stationary and non-harmonic interference lines from gravitational wave interferometer data. These lines appear to be associated with the external electricity main supply, but their amplitudes are non-stationary and they do not appear at harmonics of the fundamental supply frequency. We find an empirical model able to represent coherently all the non-harmonic lines we have found in the power spectrum, in terms of an assumed reference signal of the primary supply input signal. If this signal is not available then it can be reconstructed from the same data by making use of the coherent line removal algorithm that we have described elsewhere. All these lines are broadened by frequency changes of the supply signal, and they corrupt significant frequency ranges of the power spectrum. The physical process that generates this interference is so far unknown, but it is highly non-linear and non-stationary. Using our model, we cancel the interference in the time domain by an adaptive procedure that should work regardless of the source of the primary interference. We have applied the method to laser interferometer data from the Glasgow prototype detector, where all the features we describe in this paper were observed. The algorithm has been tuned in such a way that the entire series of wide lines corresponding to the electrical interference are removed, leaving the spectrum clean enough to detect signals previously masked by them. Single-line signals buried in the interference can be recovered with at least 75 % of their original signal amplitude.Comment: 14 pages, 5 figures, Revtex, psfi

    ArgoNeuT and the Neutrino-Argon Charged Current Quasi-Elastic Cross Section

    Full text link
    ArgoNeuT, a Liquid Argon Time Projection Chamber in the NuMI beamline at Fermilab, has recently collected thousands of neutrino and anti-neutrino events between 0.1 and 10 GeV. The experiment will, among other things, measure the cross section of the neutrino and anti-neutrino Charged Current Quasi-Elastic interaction and analyze the vertex activity associated with such events. These topics are discussed along with ArgoNeuT's automated reconstruction software, currently capable of fully reconstructing the muon and finding the event vertex in neutrino interactions.Comment: 6 pages, 4 figures, presented at the International Nuclear Physics Conference, Vancouver, Canada, July 4-9, 2010, to be published in Journal of Physics: Conference Series (JPCS

    Extending the bandwidth of optical-tweezers interferometry

    Get PDF
    The extension of the bandwidth of optical-tweezers interferometry was discussed. It was found that the detection bandwidth was extended to at least 100 KHz, either by using wavelengths below 850 nm or by using different detectors at longer wavelengths. The power spectral density of the Brownian motion of micron-sized beads in optical tweezers was also measured

    Neural Network-Based Equations for Predicting PGA and PGV in Texas, Oklahoma, and Kansas

    Full text link
    Parts of Texas, Oklahoma, and Kansas have experienced increased rates of seismicity in recent years, providing new datasets of earthquake recordings to develop ground motion prediction models for this particular region of the Central and Eastern North America (CENA). This paper outlines a framework for using Artificial Neural Networks (ANNs) to develop attenuation models from the ground motion recordings in this region. While attenuation models exist for the CENA, concerns over the increased rate of seismicity in this region necessitate investigation of ground motions prediction models particular to these states. To do so, an ANN-based framework is proposed to predict peak ground acceleration (PGA) and peak ground velocity (PGV) given magnitude, earthquake source-to-site distance, and shear wave velocity. In this framework, approximately 4,500 ground motions with magnitude greater than 3.0 recorded in these three states (Texas, Oklahoma, and Kansas) since 2005 are considered. Results from this study suggest that existing ground motion prediction models developed for CENA do not accurately predict the ground motion intensity measures for earthquakes in this region, especially for those with low source-to-site distances or on very soft soil conditions. The proposed ANN models provide much more accurate prediction of the ground motion intensity measures at all distances and magnitudes. The proposed ANN models are also converted to relatively simple mathematical equations so that engineers can easily use them to predict the ground motion intensity measures for future events. Finally, through a sensitivity analysis, the contributions of the predictive parameters to the prediction of the considered intensity measures are investigated.Comment: 5th Geotechnical Earthquake Engineering and Soil Dynamics Conference, Austin, TX, USA, June 10-13. (2018

    ACR testing of a dedicated head SPECT unit

    Get PDF
    Physics testing necessary for program accreditation is rigorously defined by the ACR. This testing is easily applied to most conventional SPECT systems based on gamma camera technology. The inSPira HD is a dedicated head SPECT system based on a rotating dual clamshell design that acquires data in a dual-spiral geometry. The unique geometry and configuration force alterations of the standard ACR physics testing protocol. Various tests, such as intrinsic planar uniformity and/or resolution, do not apply. The Data Spectrum Deluxe Phantom used for conventional SPECT testing cannot fit in the inSPira HD scanner bore, making (currently) unapproved use of the Small Deluxe SPECT Phantom necessary. Matrix size, collimator type, scanning time, reconstruction method, and attenuation correction were all varied from the typically prescribed ACR instructions. Visible spheres, sphere contrast, visible rod groups, uniformity, and root mean square (RMS) noise were measured. The acquired SPECT images surpassed the minimum ACR requirements for both spatial resolution (9.5 mm spheres resolved) and contrast (6.4 mm rod groups resolved). Sphere contrast was generally high. Integral uniformity was 4% and RMS noise was 1.7%. Noise appeared more correlated than in images from a conventional SPECT scanner. Attenuation-corrected images produced from direct CT scanning of the phantom and a manufacturer supplied model of the phantom demonstrated negligible differences

    Exploring Spirituality in Teaching Within a Christian School Context Through Collaborative Action Research

    Get PDF
    This article reports on a collaborative action research project conducted in New Zealand, during 2012, exploring spirituality in teaching within a Christian school context. The experienced primary school teacher participant chose to take action around the issue of personal fear and insecurity which were believed to be hindering professional growth and relationships. Through self-directed inquiry, critical reflective journaling, Bible study, fellowship and prayer with trusted friends, the teacher experienced a renewed sense of peace and freedom in Christ. This personal transformation was believed to be influential on subsequent professional practice, assisting the teacher to become more relational, responsive and compassionate. The findings provide a rich description of the participant’s spirituality, the lived reality of a person’s spiritual life. This report will be of interest to teachers, teacher-leaders and teacher-educators who desire to explore Christian spirituality through practitioner-led inquiry

    Gravitational-Wave Stochastic Background Detection with Resonant-Mass Detectors

    Get PDF
    In this paper we discuss how the standard optimal Wiener filter theory can be applied, within a linear approximation, to the detection of an isotropic stochastic gravitational-wave background with two or more detectors. We apply then the method to the AURIGA-NAUTILUS pair of ultra low temperature bar detectors, near to operate in coincidence in Italy, obtaining an estimate for the sensitivity to the background spectral density of $\simeq 10^{-49}\ Hz^{-1},thatconvertstoanenergydensityperunitlogarithmicfrequencyof, that converts to an energy density per unit logarithmic frequency of \simeq 8\times10^{-5}\times\rho_cwith with \rho_c\simeq1.9 \times 10^{-26}\ kg/m^3theclosuredensityoftheUniverse.WealsoshowthatbyaddingtheVIRGOinterferometricdetectorunderconstructioninItalytothearray,andbyproperlyre−orientingthedetectors,onecanreachasensitivityof the closure density of the Universe. We also show that by adding the VIRGO interferometric detector under construction in Italy to the array, and by properly re- orienting the detectors, one can reach a sensitivity of \simeq 6 \times10^{-5}\times\rho_c.WethencalculatethatthepairformedbyVIRGOandonelargemasssphericaldetectorproperlylocatedinoneofthenearbyavailablesitesinItalycanreahasensitivityof. We then calculate that the pair formed by VIRGO and one large mass spherical detector properly located in one of the nearby available sites in Italy can reah a sensitivity of \simeq 2\times10^{-5}\times \rho_cwhileapairofsuchsphericaldetectorsatthesamesitesofAURIGAandNAUTILUScanachievesensitivitiesof while a pair of such spherical detectors at the same sites of AURIGA and NAUTILUS can achieve sensitivities of \simeq 2 \times10^{-6}\rho_c$.Comment: 32 pages, postscript file, also available at http://axln01.lnl.infn.it/reports/stoch.htm

    Spectropolarimetric observations of the transiting planetary system of the K dwarf HD 189733

    Full text link
    With a Jupiter-mass planet orbiting at a distance of only 0.031 AU, the active K2 dwarf HD 189733 is a potential candidate in which to study the magnetospheric interactions of a cool star with its recently-discovered close-orbiting giant planet. We decided to explore the strength and topology of the large-scale magnetosphere of HD 189733, as a future benchmark for quantitative studies for models of the star/planet magnetic interactions. To this end, we used ESPaDOnS, the new generation spectropolarimeter at the Canada-France-Hawaii 3.6m telescope, to look for Zeeman circular polarisation signatures in the line profiles of HD 189733 in 2006 June and August. Zeeman signatures in the line profiles of HD 189733 are clearly detected in all spectra, demonstrating that a field is indeed present at the surface of the star. The Zeeman signatures are not modulated with the planet's orbital period but apparently vary with the stellar rotation cycle. The reconstructed large-scale magnetic field, whose strength reaches a few tens of G, is significantly more complex than that of the Sun; it involves in particular a significant toroidal component and contributions from magnetic multipoles of order up to 5. The CaII H & K lines clearly feature core emission, whose intensity is apparently varying mostly with rotation phase. Our data suggest that the photosphere and magnetic field of HD 189733 are sheared by a significant amount of differential rotation. Our initial study confirms that HD 189733 is an optimal target for investigating activity enhancements induced by closely orbiting planets. More data are needed, densely covering both the orbital and rotation cycles, to investigate whether and how much the planet contributes to the overall activity level of HD 189733.Comment: Accepted in Astronomy and Astrophysics, 12 page
    • 

    corecore