25 research outputs found

    Can we predict cognitive decline after initial diagnosis of multiple sclerosis? Results from the German National early MS cohort (KKNMS)

    Get PDF
    BACKGROUND: Cognitive impairment (CI) affects approximately one-third of the patients with early multiple sclerosis (MS) and clinically isolated syndrome (CIS). Little is known about factors predicting CI and progression after initial diagnosis. METHODS: Neuropsychological screening data from baseline and 1-year follow-up of a prospective multicenter cohort study (NationMS) involving 1123 patients with newly diagnosed MS or CIS were analyzed. Employing linear multilevel models, we investigated whether demographic, clinical and conventional MRI markers at baseline were predictive for CI and longitudinal cognitive changes. RESULTS: At baseline, 22% of patients had CI (impairment in ≥2 cognitive domains) with highest frequencies and severity in processing speed and executive functions. Demographics (fewer years of academic education, higher age, male sex), clinical (EDSS, depressive symptoms) but no conventional MRI characteristics were linked to baseline CI. At follow-up, only 14% of patients showed CI suggesting effects of retesting. Neither baseline characteristics nor initiation of treatment between baseline and follow-up was able to predict cognitive changes within the follow-up period of 1 year. CONCLUSIONS: Identification of risk factors for short-term cognitive change in newly diagnosed MS or CIS is insufficient using only demographic, clinical and conventional MRI data. Change-sensitive, re-test reliable cognitive tests and more sophisticated predictors need to be employed in future clinical trials and cohort studies of early-stage MS to improve prediction

    The Physics of the B Factories

    Get PDF

    Sex-specific behavioral effects of acute exposure to the neonicotinoid clothianidin in mice

    No full text
    Although neonicotinoids are among the major classes of pesticides that affect mammalian nervous systems, little is known about sex differences in their effects. This study aimed to examine whether the neurobehavioral effects of a neonicotinoid, clothianidin (CLO), differed between sexes. Male and female C57BL/6N mice were orally administered CLO (5 or 50 mg/kg) at or below the chronic no-observed-adverse-effect-level (NOAEL) and sub- jected to behavioral tests of emotional and learning functions. Changes in neuroactivity in several brain regions and the concentrations of CLO and its metabolites in blood and urine were measured. Acute CLO exposure caused sex-related behavioral effects; decreases in locomotor activities and elevation of anxiety-like behaviors were more apparent in males than in females. In addition, male-specific impairment of short- and long-term learning memory by CLO exposure was observed in both the novel recognition test and the Barnes maze test. Male- dominant increases in the number of c-fos positive cells were observed in the paraventricular thalamic nu- cleus in the thalamus and in the dentate gyrus in the hippocampus, which are related to the stress response and learning function, respectively. The concentrations of CLO and most metabolites in blood and urine were higher in males. These results support the notion that male mice are more vulnerable than females to the neuro- behavioral effects of CLO and provide novel insights into the risk assessment of neonicotinoids in mammalian neuronal function

    Association of retinal ganglion cell layer thickness with future disease activity in patients with clinically isolated syndrome

    No full text
    IMPORTANCE: Clinically isolated syndrome (CIS) describes a first clinical incident suggestive of multiple sclerosis (MS). Identifying patients with CIS who have a high risk of future disease activity and subsequent MS diagnosis is crucial for patient monitoring and the initiation of disease-modifying therapy. OBJECTIVE: To investigate the association of retinal optical coherence tomography (OCT) results with future disease activity in patients with CIS. DESIGN, SETTING, AND PARTICIPANTS: This prospective, longitudinal cohort study took place between January 2011 and May 2017 at 2 German tertiary referral centers. A total of 179 patients with CIS were screened (80 in Berlin and 99 in Munich). Patients underwent neurological examination, magnetic resonance imaging (MRI), and OCT. Only eyes with no previous optic neuritis were considered for OCT analysis. MAIN OUTCOMES AND MEASURES: The primary outcome was not meeting the no evidence of disease activity (NEDA-3) criteria; secondary outcomes were MS diagnosis (by the 2010 McDonald criteria) and worsening of disability. The primary measure was OCT-derived ganglion cell and inner plexiform layer thickness; the secondary measures included peripapillary retinal nerve fiber layer thickness, inner nuclear layer thickness, and MRI-derived T2-weighted lesions. RESULTS: A total of 97 of the 179 screened patients (54.2%) were enrolled in the study at a median of 93 (interquartile range [IQR], 62-161) days after a first demyelinating event. The median follow-up duration (Kaplan-Meier survival time) was 729 (IQR, 664-903) days. Of 97 patients with CIS (mean age 33.6 [7.9] years; 61 [62.9%] female), 58 (59%) did not meet NEDA-3 criteria during the follow-up period. A Kaplan-Meier analysis showed a significant probability difference in not meeting NEDA-3 criteria by ganglion cell and inner plexiform later thickness (thinnest vs thickest tertile: hazard ratio [HR], 3.33 [95% CI, 1.70-6.55; P < .001; log-rank P = .001). A follow-up diagnosis of MS was more likely for patients with low ganglion cell and inner plexiform layer thickness (thinnest vs thickest tertile: HR, 4.05 [95% CI, 1.93-8.50]; P < .001). Low peripapillary retinal nerve fiber layer thickness likewise indicated risk of not meeting NEDA-3 criteria (thinnest vs thickest tertile: HR, 2.46 [95% CI, 1.29-4.66]; P = .01; log-rank P = .02). Inner nuclear layer thickness and T2-weighted lesion count were not associated with not meeting NEDA-3 criteria. CONCLUSIONS AND RELEVANCE: Retinal ganglion cell and inner plexiform layer thickness might prove a valuable imaging marker for anticipating future disease activity and diagnosis of MS in patients with CIS, which can potentially support patient monitoring and initiation of disease-modifying therapy

    Functional near infrared optical imaging in cognitive neuroscience: an introductory review

    No full text
    Cognitive neuroscience is a multidisciplinary field focused on the exploration of the neural substrates underlying cognitive functions; the most remarkable progress in understanding the relationship between brain and cognition has been made with functional brain imaging. Functional near infrared (fNIR) spectroscopy is a non-invasive brain imaging technique that measures the variation of oxygenated and deoxygenated haemoglobin at high temporal resolution. Stemming from the first pioneering experiments, the use of fNIR spectroscopy in cognitive neuroscience has constantly increased. Here, we present a brief review of the fNIR spectroscopy investigations in the cognitive neuroscience field. The topics discussed encompass the classical issues in cognitive neuroscience, such as the exploration of the neural correlates of vision, language, memory, attention and executive functions. Other relevant research topics are introduced in order to show the strengths and the limitations of fNIR spectroscopy, as well as its potential in the biomedical field. This review is intended to provide a general view of the wide variety of optical imaging applications in the field of cognitive neuroscience. The increasing body of studies and the constant technical improvement suggest that fNIR spectroscopy is a versatile and promising instrument to investigate the neural correlates of human cognition

    Functional near Infrared Optical Imaging in Cognitive Neuroscience: An Introductory Review

    No full text
    corecore