487 research outputs found

    LplA1-dependent utilization of host lipoyl peptides enables Listeria cytosolic growth and virulence

    Full text link
    The bacterial pathogen Listeria monocytogenes replicates within the cytosol of mammalian cells. Mechanisms by which the bacterium exploits the host cytosolic environment for essential nutrients are poorly defined. L. monocytogenes is a lipoate auxotroph and must scavenge this critical cofactor, using lipoate ligases to facilitate attachment of the lipoyl moiety to metabolic enzyme complexes. Although the L. monocytogenes genome encodes two putative lipoate ligases, LplA1 and LplA2, intracellular replication and virulence require only LplA1. Here we show that LplA1 enables utilization of host-derived lipoyl peptides by L. monocytogenes . LplA1 is dispensable for growth in the presence of free lipoate, but necessary for growth on low concentrations of mammalian lipoyl peptides. Furthermore, we demonstrate that the intracellular growth defect of the δ lplA1 mutant is rescued by addition of exogenous lipoic acid to host cells, suggesting that L. monocytogenes dependence on LplA1 is dictated by limiting concentrations of available host lipoyl substrates. Thus, the ability of L. monocytogenes and other intracellular pathogens to efficiently use host lipoyl peptides as a source of lipoate may be a requisite adaptation for life within the mammalian cell.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72528/1/MMI+5956+Supp.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/72528/2/j.1365-2958.2007.05956.x.pd

    Temperature dependence of single particle excitations in a S=1 chain: exact diagonalization calculations compared to neutron scattering experiments

    Full text link
    Exact diagonalization calculations of finite antiferromagnetic spin-1 Heisenberg chains at finite temperatures are presented and compared to a recent inelastic neutron scattering experiment for temperatures T up to 7.5 times the intrachain exchange constant J. The calculations show that the excitations at the antiferromagnetic point q=1 and at q=0.5 remain resonant up to at least T=2J, confirming the recent experimental observation of resonant high-temperature domain wall excitations. The predicted first and second moments are in good agreement with experiment, except at temperatures where three-dimensional spin correlations are most important. The ratio of the structure factors at q=1 and at q=0.5 is well predicted for the paramagnetic infinite-temperature limit. For T=2J, however, we found that the experimentally observed intensity is considerably less than predicted. This suggests that domain wall excitations on different chains interact up to temperatures of the order of the spin band width.Comment: 9 pages revtex, submitted to PR

    Magnetoluminescence

    Full text link
    Pulsar Wind Nebulae, Blazars, Gamma Ray Bursts and Magnetars all contain regions where the electromagnetic energy density greatly exceeds the plasma energy density. These sources exhibit dramatic flaring activity where the electromagnetic energy distributed over large volumes, appears to be converted efficiently into high energy particles and gamma-rays. We call this general process magnetoluminescence. Global requirements on the underlying, extreme particle acceleration processes are described and the likely importance of relativistic beaming in enhancing the observed radiation from a flare is emphasized. Recent research on fluid descriptions of unstable electromagnetic configurations are summarized and progress on the associated kinetic simulations that are needed to account for the acceleration and radiation is discussed. Future observational, simulation and experimental opportunities are briefly summarized.Comment: To appear in "Jets and Winds in Pulsar Wind Nebulae, Gamma-ray Bursts and Blazars: Physics of Extreme Energy Release" of the Space Science Reviews serie

    Secondary education reform in Lesotho and Zimbabwe and the needs of rural girls: Pronouncements, policy and practice

    Get PDF
    Analysis of the educational needs of rural girls in Lesotho and Zimbabwe suggests a number of shortcomings in the current form of secondary education, and ways in which it might be modified so as to serve this sizeable group of students better. Several of the shortcomings, notably in relation to curricular irrelevance and excessive focus on examinations, have long been recognised, including by politicians. Yet political pronouncements are seldom translated into policy, and even where policy is formulated, reforms are seldom implemented in schools. This paper makes use of interviews with educational decision-makers in the two southern African countries and a range of documentary sources to explore why, despite the considerable differences between the two contexts, much needed educational reforms have been implemented in neither

    Search for the Invisible Decay of Neutrons with KamLAND

    Get PDF
    The Kamioka Liquid scintillator Anti-Neutrino Detector (KamLAND) is used in a search for single neutron or two neutron intra-nuclear disappearance that would produce holes in the s\it{s}-shell energy level of 12^{12}C nuclei. Such holes could be created as a result of nucleon decay into invisible modes (invinv), e.g. n3νn \to 3\nu or nn2νnn \to 2\nu. The de-excitation of the corresponding daughter nucleus results in a sequence of space and time correlated events observable in the liquid scintillator detector. We report on new limits for one- and two-neutron disappearance: τ(ninv)>5.8×1029\tau(n\to inv)> 5.8\times 10^{29} years and τ(nninv)>1.4×1030\tau (nn \to inv)> 1.4 \times 10^{30} years at 90% CL. These results represent an improvement of factors of \sim3 and >104>10^4 over previous experiments.Comment: 5 pages, 3 figure

    Effects of Intermittent IL-2 Alone or with Peri-Cycle Antiretroviral Therapy in Early HIV Infection: The STALWART Study

    Get PDF
    The Study of Aldesleukin with and without antiretroviral therapy (STALWART) evaluated whether intermittent interleukin-2 (IL-2) alone or with antiretroviral therapy (ART) around IL-2 cycles increased CD4+ counts compared to no therapy

    Experimental Lagos bat virus infection in straw-colored fruit bats: A suitable model for bat rabies in a natural reservoir species

    Get PDF
    Rabies is a fatal neurologic disease caused by lyssavirus infection. Bats are important natural reservoir hosts of various lyssaviruses that can be transmitted to people. The epidemiology and pathogenesis of rabies in bats are poorly understood, making it difficult to prevent zoonotic transmission. To further our understanding of lyssavirus pathogenesis in a natural bat host, an experimental model using straw-colored fruit bats (Eidolon helvum) and Lagos bat virus, an endemic lyssavirus in this species, was developed. To determine the lowest viral dose resulting in 100% productive infection, bats in five groups (four bats per group) were inoculated intramuscularly with one of five doses, ranging from 100.1 to 104.1 median tissue culture infectious dose (TCID50). More bats died due to the development of rabies after the middle dose (102.1 TCID50, 4/4 bats) than after lower (101.1, 2/4; 101.1, 2/4) or higher (103.1, 2/4; 104.1, 2/4) doses of virus. In the two highest dose groups, 4/8 bats developed rabies. Of those bats that remained healthy 3/4 bats seroconverted, suggesting that high antigen loads can trigger a strong immune response that abrogates a productive infection. In contrast, in the two lowest dose groups, 3/8 bats developed rabies, 1/8 remained healthy and seroconverted and 4/8 bats remained healthy and did not seroconvert, suggesting these doses are too low to reliably induce infection. The main lesion in all clinically affected bats was meningoencephalitis associated with lyssavirus-positive neurons. Lyssavirus antigen was detected in tongue epithelium (5/11 infected bats) rather than in salivary gland epithelium (0/11), suggesting viral excretion via the tongue. Thus, intramuscular inoculation of 102.1 TCID50 of Lagos bat virus into straw-colored fruit bats is a suitable m

    Design and construction of the MicroBooNE detector

    Get PDF
    This paper describes the design and construction of the MicroBooNE liquid argon time projection chamber and associated systems. MicroBooNE is the first phase of the Short Baseline Neutrino program, located at Fermilab, and will utilize the capabilities of liquid argon detectors to examine a rich assortment of physics topics. In this document details of design specifications, assembly procedures, and acceptance tests are reported

    On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection

    Get PDF
    A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)
    corecore