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Abstract

Rabies is a fatal neurologic disease caused by lyssavirus infection. Bats are important natu-

ral reservoir hosts of various lyssaviruses that can be transmitted to people. The epidemiol-

ogy and pathogenesis of rabies in bats are poorly understood, making it difficult to prevent

zoonotic transmission. To further our understanding of lyssavirus pathogenesis in a natural

bat host, an experimental model using straw-colored fruit bats (Eidolon helvum) and Lagos

bat virus, an endemic lyssavirus in this species, was developed. To determine the lowest

viral dose resulting in 100% productive infection, bats in five groups (four bats per group)

were inoculated intramuscularly with one of five doses, ranging from 100.1 to 104.1 median

tissue culture infectious dose (TCID50). More bats died due to the development of rabies

after the middle dose (102.1 TCID50, 4/4 bats) than after lower (101.1, 2/4; 101.1, 2/4) or

higher (103.1, 2/4; 104.1, 2/4) doses of virus. In the two highest dose groups, 4/8 bats devel-

oped rabies. Of those bats that remained healthy 3/4 bats seroconverted, suggesting that

high antigen loads can trigger a strong immune response that abrogates a productive infec-

tion. In contrast, in the two lowest dose groups, 3/8 bats developed rabies, 1/8 remained

healthy and seroconverted and 4/8 bats remained healthy and did not seroconvert, suggest-

ing these doses are too low to reliably induce infection. The main lesion in all clinically

affected bats was meningoencephalitis associated with lyssavirus-positive neurons. Lyssa-

virus antigen was detected in tongue epithelium (5/11 infected bats) rather than in salivary

gland epithelium (0/11), suggesting viral excretion via the tongue. Thus, intramuscular inoc-

ulation of 102.1 TCID50 of Lagos bat virus into straw-colored fruit bats is a suitable model for
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lyssavirus associated bat rabies in a natural reservoir host, and can help with the investiga-

tion of lyssavirus infection dynamics in bats.

Author summary

Rabies is a fatal neurologic disease affecting people and animals. Rabies is caused by infec-

tion with a virus of the genus Lyssavirus. People usually get infected from dog bites, but

bats are an increasingly important source of the disease. To better understand the biology

of rabies in bats, we developed a laboratory model to study the disease in bats under con-

trolled circumstances. For this model we used Lagos bat virus in straw-colored fruit bats

and, as part of its development, we wanted to know the best virus dose to use to cause

rabies. Therefore, we compared the outcomes of five different virus doses injected into the

muscle of the bats. The best dose for our model was the middle dose, which caused rabies

more frequently than either the highest or the lowest doses. The higher doses more fre-

quently resulted in the development of an anti-viral immune response which appeared to

protect against disease, while bats with low doses also often failed to develop disease. The

virus dose thus followed the Goldilocks principle, with the middle dose being just right.

Introduction

Rabies is an almost invariably fatal disease caused by rabies virus (RABV) or any other member

of the Lyssavirus genus (family: Rhabdoviridae, order: Mononegavirales) [1,2]. Rabies virus is

predominantly transmitted to people by carnivores, in particular the domestic dog (Canis
familiaris), and causes more than 59,000 human fatalities annually [3]. As terrestrial rabies in

domestic and wild carnivores is being brought under control by vaccination in high- and mid-

dle-income countries, the role of bats as a source of human infection has become more evident

[4,5]. Also, bats are the main source of cattle rabies infections in South America [6]. In Latin

America, an estimated 30 million US$ is spent annually on rabies preventive measures [7].

Although rare, the transmission of RABV from bats to terrestrial carnivores has been demon-

strated as a driver of outbreaks in terrestrial mammals, as has been reported several times in

the Americas [8–13]. Singular spill-over events of lyssaviruses other than RABV from bats to

terrestrial mammals also have been reported [14–19]. Despite increasing recognition of their

importance, relatively little is known about the dynamics of lyssavirus infections in their natu-

ral hosts, bats [13,20,21]. Based on the recurrent finding of high seroprevalences in some free-

ranging bat populations (Table 3.2 in [22]), a number of researchers have hypothesized that

bats, in contrast to other mammals, can survive a productive lyssavirus infection, i.e an infec-

tion where lyssavirus reaches the brain and is subsequently excreted from the oral cavity [23].

In contradiction, there is no indication from experimental infections in bats that this occurs

[24–47] and bats seem, like other species, unable to survive infection of the brain, which

appears to always result in fatal rabies [21,48]. Experimental infections in bats have been per-

formed mainly with four lyssaviruses: RABV, Australian bat lyssavirus, and European bat lys-

saviruses 1 and 2 [49]. These experimental infections have shown that—similar to RABV in

carnivores—these lyssaviruses target the brain [50–52] with infection typically leading to

encephalitis and death [26,32,35,37]. An important limiting factor in this previous bat-lyssa-

virus research is that oral excretion of virus was rarely observed in experimentally-infected

bats making it difficult to test the hypothesis that bats are able to survive a productive
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lyssavirus infection [24–46]. The rare observation of oral excretion suggests experimental

models for natural lyssavirus infections in bats need to be improved.

The current study is a second step in the development of an experimental model that meets

our goal of mimicking natural infection in a natural reservoir bat host. By ‘natural reservoir

host’ we mean a host that is naturally infected and has co-evolved with the pathogen. Lagos bat

virus (LBV), which comprises four lineages, A to D [49], is endemic in the straw-colored fruit

bat (Eidolon helvum) [53,54], a common and widespread bat species in sub-Saharan Africa,

which is not considered as ‘Threatened’ by the International Union for Conservation of Nature

(www.iucnredlist.org). In a previous study, we tested different Lagos bat virus isolates in the

straw-colored fruit bat [55]. Based on that study, a recent LBV isolate from Ghana [56] was

selected as most appropriate because viral infection spread from the brain widely in the periph-

eral nervous system as expected for a natural productive lyssavirus infection [55].

Infections of LBV in mammals other than bats have been reported sporadically [17,18,57].

Human infection has not been demonstrated, but diagnostic analysis of human rabies cases in

Africa, if undertaken, typically uses methods that do not distinguish RABV from LBV or other

lyssaviruses [49]. While the impact of LBV on human health is unknown, the widespread dis-

tribution of the straw-colored fruit bat and the apparent high rate of exposure of this species to

LBV across its range [54,58], the increasingly close association of people with this gregarious

bat species which often roosts in large human settlements and is consumed as food [59] and

the failure of rabies immunization to protect against LBV [60], indicate that this pathogen has

the potential to threaten public health.

The specific goal of the current study was to identify the lowest inoculation dose of LBV

that leads to a 100% rate of infection in straw-colored fruit bats after intramuscular inocula-

tion. Additionally, the pathogenesis of LBV infection in these bats was investigated. The ulti-

mate aim of this study was to develop a model that mimics a natural infection. Therefore, virus

distribution, cell tropism and the lesions that developed in these experimentally-infected bats

were compared with those of a naturally-infected bat, which also was the source of the LBV

isolate we used for experimental inoculation [56].

Results

Clinical signs

Overall, 11 of 20 experimentally-inoculated bats died due to LBV infection and from now on

these bats are referred to as having been rabid, whether or not clinical rabies was observed.

Disease causation was confirmed as being LBV infection by positive reverse transcription

quantitative PCR (RT-qPCR), rabies tissue culture infection test (RTCIT), fluorescent anti-

body test (FAT), and immunohistochemical (IHC) examination of their brains (see below).

The 102.1 medium tissue culture infectious dose (TCID50) virus dose was the most successful

in causing lethal LBV infection (Fig 1, Table 1).

Day of death post inoculation (pi) due to LBV infection ranged from 7 to 17, with one outlier

(bat 14) from the 100.1 TCID50 group, that died on day 61 pi (Fig 1). Four bats died without clinical

signs being observed, one each from the 100.1 TCID50, 101.1 TCID50, 102.1 TCID50 and 104.1

TCID50 groups, suggesting a short disease course. Seven bats developed clinical signs, of which six

died or were euthanized within 12 hours, and one within 24 hours, of clinical signs first being

observed. Clinical signs observed were increased vocalization, muscle spasms and tremors,

increased saliva surrounding the mouth and aggression, and were the same as those noted in bats

inoculated intracranially with this strain of LBV in a previous experiment [55]. There was no cor-

relation between age (S1 Table) and infection status (χ2 [1,N = 20] = 0.90, p = .34), or between age

and the development of antibodies (χ2 [1,N = 20] = 1.62, p = .20, an alpha level of .05 was used).
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Fig 1. Survival per inoculation group (n = 4 bats) over time, showing 100% mortality in the middle dose (102.1

TCID50) group.

https://doi.org/10.1371/journal.pntd.0008898.g001

Table 1. Association between clinical outcome and detection of lyssavirus in the brains of straw-colored fruit bats inoculated with different doses of Lagos bat

virus.

Virus dose group (TCID50) Bat no. Clinical signs observed? DoD pib Outcome of lyssavirus detection in brain by different

methods

RT-qPCR RTCIT FAT IHC

100.1 17 No nac - - - -

18 No na - - - -

19 Noa 61 + + + +

20 No na - - - -

101.1 13 Yes 12 + + + +

14 Noa 7 + + + +

15 No na - - - -

16 No na - - - -

102.1 9 Yes 10 + + + +

10 Yes 13 + + + +

11 Yes 17 + + + +

12 Noa 15 + + + +

103.1 5 No na - - - -

6 No na - - - -

7 Yes 8 + + + +

8 Yes 13 + + + +

104.1 1 Noa 8 + + + +

2 No na - - - -

3 No na - - - -

4 Yes 9 + + + +

a Bat was found dead, clinical signs were not observed
b Number of days between date of inoculation and date of death (DoD) or euthanasia because of clinical signs.
c Not applicable: bat remained healthy and was euthanized at the end of the experiment at day 160 or 161 post inoculation.

https://doi.org/10.1371/journal.pntd.0008898.t001
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No clinical signs were reported in the naturally-infected bat that was the host for the virus

used within this study, although this animal was not observed for long as it was killed at the

time of capture [56].

Serology

Four of the six experimentally-inoculated bats that developed LBV-neutralizing antibodies in

their serum were in the two highest virus dose groups (103.1 and 104.1 TCID50), and none of

these six bats were in the lowest virus dose group (100.1 TCID50) (Fig 2). The development of

antibodies thus seemed to be correlated with high virus dose, although the small number of

bats per virus dose group precludes meaningful statistical analysis. The earliest that antibodies

were detected in any bat was at 9 days pi.

Of the six bats that developed antibodies, four survived and remained clinically healthy to

the end of the study (160 days post inoculation). The two seropositive bats that died, did so

with clinical signs of rabies. However, the highest reciprocal antibody titer measured in these

two bats was 27, which was lower than the highest titer measured in most of the bats that sero-

converted and survived (Fig 2).

Fig 2. Comparison of virus-neutralizing antibody response between straw-colored fruit bats that died or survived

after inoculation with different doses of Lagos bat virus. The numbers on top of the stacked column are reciprocal

VNA titers.

https://doi.org/10.1371/journal.pntd.0008898.g002
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In the naturally-infected bat used in this study no LBV-neutralizing antibodies were

detected in serum using the modified rapid fluorescent focus inhibition test [56].

Virology

Several parts of the brain (rostral part, hippocampus, cerebellum, medulla oblongata) of each

experimentally-inoculated bat that died without clinical disease being observed or that had

clinical signs and was euthanized (n = 11), tested positive for LBV using RT-qPCR, RTCIT,

and FAT, while the brains of bats that survived until the end of the experiment (n = 9) tested

negative (Table 1). An analysis of variance (one-way ANOVA) showed that the (log trans-

formed) Ct values, reflecting the quantity of virus present, of the four different brain areas did

not differ significantly, F(1,62) = 5.94, p = .200 (an alpha level of .05 was used). The mean

brain Ct value per LBV-positive bat ranged from 26 to 28 in all but one bat, in which the mean

Ct value was 30 (Table 2). These data suggest that when the virus reached a certain threshold

in the brain, the bat either died after a short disease duration, or developed end-stage clinical

disease and was euthanized.

Extra-encephalic tissues in 8 of the 11 bats (bats 19 [100.1 TCID50 group], 13, 14 [101.1

TCID50 group], 9, 10, 12 [102.1 TCID50 group], 7 [103.1 TCID50 group], and 1 [100.1 TCID50

group]) that died with LBV infection tested positive by RT-qPCR. The tissues that tested posi-

tive by RT-qPCR were tongue and salivary gland (Table 3), liver (bat 19, Ct 39, and bat 13, Ct

32), lung (bat 19, Ct 38) and intestines (jejunum of bat 19, Ct 40; colon of bat 19, Ct 39; and

duodenum of bat 13, Ct 38). Virus isolation confirmed the presence of LBV in all these tissues,

apart from the tongue of bat 8, livers of bat 13 and 19, and the duodenum of bat 13, from

which virus could not be isolated. From bats that survived to the end of the study all extra-

encephalic tissues tested negative by RT-qPCR. All oral swabs taken from bats that died during

the study were tested, as well as the oral swabs taken on the day of termination of the study

from healthy bats that survived to the end of the study. All oral swabs in RNAlater (n = 97)

tested negative for the presence of lyssavirus RNA using RT-qPCR, and 14 (14%) tested nega-

tive for beta actin. MEM stored oral swabs (n = 81) tested negative for the presence infectious

virus by RTCIT. The FAT was performed for salivary gland tissue, and was inconclusive

because of nonspecific fluorescence, as has been described previously for glandular tissue [61].

The brain of the naturally-infected bat had tested positive for LBV using a generic RT-PCR

and FAT [56].

Pathology

At necropsy, gross lesions were noted in 3 (nos. 12, 13, and 14) of the 20 bats from the experi-

ment. All three were bats that died of rabies. Bat 13 and 14 had acute incision wounds on their

Table 2. Comparison of survival time and relative quantity of Lagos bat virus RNA in the brains of straw-colored fruit bats inoculated with different doses of Lagos

bat virus. (Four bats in each virus dose group.)

Virus dose group

(TCID50)

No. bats with fatal LBV

infection

Survival time (range, days post

inoculation)

Mean relative quantity of lyssaviral RNA in brain, per bat

(Ct)a

100.1 1 61 26

101.1 2 7–12 26, 26

102.1 4 10–17 27, 28, 27, 27

103.1 2 8–13 26, 30

104.1 2 8–9 26, 27

a Based on the relative quantity of LBV RNA, determined by RT-qPCR, in four different areas of the brain.

https://doi.org/10.1371/journal.pntd.0008898.t002
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tongue surfaces, likely because they had bitten their own tongues or the metal cages (biting of

the metal cages by rabid bats had been observed). Bat 14 also had a fractured second digit. Bat

12 had enlarged lymph nodes.

On histopathological examination, lesions directly associated with LBV infection were lim-

ited to the brain. All 11 rabid bats had diffuse meningo-encephalitis, ranging from mild to

moderate in severity. In each case the meningo-encephalitis was characterized by the presence

of few to a moderate number of lymphocytes around blood vessels in the meninges and brain

parenchyma (perivascular cuffing). Lymphocytes surrounding blood vessels in the meninges

and brain parenchyma were three cell layers thick at most. In the brain parenchyma, there was

a mild increase in the number of glial cells and there were occasional pyknotic or karyorrhectic

cells of undetermined origin (ranging from one to eight per five 40x objective fields). Negri

bodies were not observed. None of the nine bats that survived until the end of the experiment

had histologic changes associated with meningo-encephalitis.

The naturally-infected bat [56] was not examined for the presence of gross lesions. On his-

topathological examination, this bat had a moderate diffuse meningo-encephalitis similar to

that seen in the experimentally-inoculated bats that became rabid. The naturally-infected bat

had inflammation of the salivary gland (sialoadenitis) which was characterized by multifocal

aggregates of moderate numbers of lymphocytes within the interstitium surrounding the

larger excretory ducts of the salivary gland. No experimentally-infected bat had this lesion and,

Table 3. Evidence for lyssavirus infection, based on different methods, at excretion sites in straw-colored fruit bats with Lagos bat virus-positive brains.

Outcome of lyssavirus detection at excretion site by different methods

Bat

no.

Salivary gland Tongue Overall

RT-

qPCRa
RTCITb IHCc

neuron

IHC

epithelium

RT-

qPCR

RTCIT IHC

neuron

IHC epithelium (taste bud/

surface)

Naturally infected bat

[56]

na nad na + + na na + + +

Experimentally infected

bats

Virus dose group

(TCID50)

100.1 19 39e +f + -g 36 + + + +

101.1 13 - - + - 35 + + - +

14 - - - - 35 + - - +

102.1 9 - - - - 39 + + + +

10 - - - - 36 - + + +

11 - - + - - - + + +

12 - - - - 39 + - - +

103.1 7 39 + + - 33 - + - +

8 - - - - - - + - +

104.1 1 - - - - 33 - + + +

4 - - - - - - - - -

a RT-qPCR, reverse transcription quantitative PCR for detection of viral nucleic acid
b RTCIT, rabies tissue culture infection test for detection of live virus
c IHC, immunohistochemistry for detection of viral antigen
d na, not applicable, test not performed because sample not available
e Ct value, cycle threshold of RT-qPCR
f+, positive cell culture, or cells staining positive with IHC
g -, negative for RTCIT, no Ct value, or no cells staining positive with IHC

https://doi.org/10.1371/journal.pntd.0008898.t003
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as these lymphocytic aggregates were not co-localized with cells containing virus antigen (see

below), it was not clear if this lesion was caused by LBV infection. There were several lesions

that we considered to be incidental in the tissues of both the experimentally-infected bats and

the naturally-infected bat (S1 Text).

Immunohistochemistry

Cells that stained positively for lyssavirus antigens using immunohistochemistry were found

in a number of tissues. In all cell types in which antigen was detected, it was located in the cyto-

plasm and consisted of variable numbers of small (approximately 2 μm diameter) granules.

The majority of antigen-positive cells did not show any signs of degeneration or necrosis; only

a few antigen-positive neurons in the brain showed evidence of degeneration, characterized by

cell shrinkage and loss of Nissl substance.

Antigen-positive cells were present in the brains of all 11 experimentally-inoculated bats

that died with rabies, but in none of the bats that survived to the end of the experiment. In

most of the rabid bats, positively-stained cells could be clearly identified as neurons based on

their morphology. In addition to neurons, it is possible that some glial cells were antigen-

positive.

In extra-encephalic tissues of experimentally-infected bats, antigen-positive cells were

detected in the tongue, heart and salivary gland of some of the bats that died of rabies

(Table 4). In the LBV-positive tongues, both neuroepithelial cells of taste buds and epithelial

cells of the tongue surface were antigen-positive (Fig 3), in addition to neurons within ganglia.

Table 4. Lyssavirus antigen expression in peripheral nerve ganglia and tongues of rabid bats, based on immunohistochemical analysis. No antigen was detected in

the lung, kidney, liver, spleen, duodenum, jejunum or large intestine of any of these bats.

Detection of lyssavirus antigen by immunohistochemical analysis

Bat no. Day of death (dpi) Ganglia Epithelial cells (tongue)

Heart Salivary gland Tongue Taste bud Surface

Naturally infected bat [56]a nab na na +c,d + na +

Experimentally infected bats

Virus dose group (TCID50)

100.1 19 61 + + + + (2/4)e +

101.1 13 12 -f + + naf -

14 7 na - - na -

102.1 9 10 + - + + (3/22) +

10 13 + - + + (2/4) +

11 17 na + + + (3/8) +

12 15 na - - - (0/6) -

103.1 7 8 na + + na -

8 13 - - + - (0/9) -

104.1 1 8 - - + na +

4 9 + - - na -

Tropism (pos/total), ratio in% 4/7, 57% 4/11, 36% 8/11, 72% 4/6, 67% 5/11, 45%

a additionally ganglia in the intestines were positive in this bat
b na, not applicable, data not applicable, or cell types or ganglion was not present in the tissue slide
c myoepithelial cells of the acini of the mucous salivary gland were positive in this bat
d +, antigen present
e (x/y), x is number positive, y is number of taste buds present in the tissue slide
f -, antigen not present

https://doi.org/10.1371/journal.pntd.0008898.t004
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In the LBV-positive salivary glands and hearts, only neurons within ganglia were antigen-posi-

tive (Table 4). Bat 19 (100.1 TCID50 group), the bat with the longest incubation period, had the

highest number of LBV-positive extra-encephalic tissues.

Immunohistochemistry results and RT-qPCR results did not match across the extra-ence-

phalic tissues of the 11 experimentally-inoculated bats that died of rabies. This was especially

the case for heart (4 of 7 tested did not match, 57%), tongue (4 of 11, 36%), and salivary gland

(3 of 11, [27%] [S2 Table]).

In general, the antigen distribution and staining pattern of the naturally-infected bat was

similar to that seen in the experimentally-inoculated bats that died of rabies, with three differ-

ences. In the naturally-infected bat, but not in the experimentally-infected bats, antigen-posi-

tivity was seen in myoepithelial cells of the mucous salivary gland (S1 Fig), the myenteric

ganglia of the intestines, and in the skeletal muscle of the tongue. The antigen-positive struc-

tures in tongue muscle of the naturally-infected bat were interpreted to be neuromuscular

junctions, because virus antigen distribution was composed of multiple distinct aggregates (S2

Fig), and was not evenly spread throughout the cytoplasm of the muscle fibers, as would be

expected if the muscle fibers themselves had been infected.

Discussion

In this experiment, inoculation of LBV into the masseter muscle caused rabies in 11 of 20

straw-colored fruit bats. The incubation period, duration of clinical disease, and clinical char-

acteristics of the rabid bats were consistent with those described for lyssavirus infections in

both bats and carnivores [26,38,45,62]. In our LBV-straw-colored fruit bat model, most bats

became rabid within 2 weeks pi. According to our results, a relatively long incubation period

seems to be the exception rather than the rule, with few individuals having incubation periods

two to five times the mean of that of the others. As in our current study, exceptionally long

incubation periods have been previously found to occur in low virus dose groups [26,38,45],

the reasons for which are not clear. A possible explanation is that a low initial virus dose results

in a small number of initially infected neurons, which consequently lowers the number of neu-

rons infected in the brain in subsequent rounds of interneuronal transmission of virus, and in

this way increases the time to development of clinical signs. For both experimental and natural

lyssavirus infections, durations of disease of 1–28 days were described for insectivorous and

frugivorous bats [33,38,63–66], and of 2–14 days for carnivores [62]. Thus, the duration of

Fig 3. Microscopy figure of experimentally infected straw-colored fruit bat tongue. A. Circumvallate papilla characterized by a dome in the surface lined by

epithelium. Salivary glands are present in the pit of the dome. HE stain. Original magnification 4x objective. B. Higher magnification of a taste bud that was

present in the circumvallate papilla shown in A. The neuroepithelial cells of the taste bud express lyssavirus antigen (red granules). Lyssavirus IHC stain. Original

magnification 100x objective. C. Higher magnification of another taste bud that was present in the circumvallate papilla shown in A. Surface epithelial cells near

the taste bud express lyssavirus antigen (red granules). Lyssavirus IHC stain. Original magnification 100x objective.

https://doi.org/10.1371/journal.pntd.0008898.g003
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clinical disease seen in our study is within the previously-reported range for bats, but clearly at

the lower end. We observed duration of disease of up to 24 hours, but it should be noted that

six of the seven bats that developed clinical signs died, or were euthanized, within 12 hours of

these signs first being seen. Also, four of the bats that developed rabies were found dead with

no observed signs of disease. The clinical signs seen in our bats were similar to those described

in our previous experiment with this strain of LBV [55], and are generally similar to those

described for rabies in dogs [62].

Our results show that out of five doses of LBV tested via intramuscular inoculation, the

middle inoculation dose (102.1 TCID50) was most successful in causing infection in straw-col-

ored fruit bats: all four bats inoculated with this dose became rabid, while for each of the lower

and higher doses this was maximally two of four inoculated bats (Table 1). The optimal inocu-

lation dose of LBV seemed to follow the so-called "Goldilocks principle": not too high, not too

low, but just the right amount [67]. This may appear to be counterintuitive because, for experi-

mental inoculations of most viruses, the rule is that a higher inoculation dose increases the

likelihood of infection [68]. Our findings are partly corroborated by those reported by others

that used multiple doses of lyssavirus (all RABV) via the intramuscular route. Turmelle et al

[45] tested six doses where the middle two caused the highest mortality rates. Franka et al and

Baer et al [26,31] tested two different doses and the lowest dose caused the highest mortality

rate. In contrast, three other groups found that their highest dose, out of three or four doses

tested, caused the highest mortality rate [25,38,69](Fig 4).

One explanation for the survival seen with higher lyssaviral doses in our study is that a high

dose increases the chance of triggering an effective immune response [70]. By this, we mean an

immune response that stops the virus infection before clinical signs occur and the bat dies.

Such an immune response could develop either due to the inoculum itself, or due to a limited

infection that has not yet spread widely. The inoculum could contain, besides infectious virus,

defective interfering viral particles that could trigger the development of an immune response

[71]. We aimed to keep the level of defective interfering particles as low as possible by making

a virus stock grown up from a low dose inoculum, and with minimal passage in cell culture.

We used the same virus stock diluted to different final concentrations for the different groups.

Therefore, we do not expect there to have been a different ratio of infectious virus particles to

defective interfering particles in each inoculum. In our experiment, there was a trend for more

frequent detection of virus neutralizing antibodies (VNA) against LBV in the serum of survi-

vors from the high dose groups (103.1 and 104.1 TCID50, Fig 2), although this was not statisti-

cally significant. For two other research groups that performed experiments with different

doses, VNAs were more often detected in the serum of survivors in high dose groups in one

study [45], but not in the other [31]. Further experiments would be needed to determine

whether high lyssavirus doses inoculated via a natural route have a vaccination-like effect in

bats.

A possible explanation for the survival observed with lower lyssavirus doses, when VNAs

did not develop, is that these doses were approaching the minimal infectious dose for this

virus via this inoculation route. The fact that, both in our study and those of others, lyssavirus

dose appears to follow the Goldilocks principle, indicates the importance of selecting the

appropriate virus dose when conducting lyssavirus animal experiments. It is important to take

this principle into account when judging the pathogenicity of a virus strain based on mortality

rate in experimental studies [72].

In our experiment, it seemed that the majority of bats with VNA showed no clinical signs

and survived. When combining the results of previous experiments with bats, using RABV

[31,45], there is a positive correlation between survival, and the detection of VNA: of 30 bats

that survived inoculation 16 (53%) developed VNA, while of 24 that died, 3 (13%) had
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developed VNA [X2 (2, N = 54) = 9.7, p = .0018]. In bats that survived RABV inoculation, clini-

cal signs had not been observed, nor was excretion of virus detected. These bats also had no

histologic lesions indicative of encephalitis. Therefore, there is no evidence that the virus had

Fig 4. Schematic overview of mortality and survival of bats in published experiments that used different lyssavirus doses, compared to the results of this

study. Only studies conducted since 1960 and experiments using intramuscular inoculation routes are included. Each circle is a group inoculated with a certain

dose. The size of the circle indicates the number of animals included in the group. Black indicates ratio bats in the group that died due to infection, grey means

ratio that survived. Published experiments used rabies virus, our study used Lagos bat virus.

https://doi.org/10.1371/journal.pntd.0008898.g004
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reached the brain before being cleared by the immune response. Thus, our findings and those

of others strongly suggest that bats can develop an immune response without undergoing clini-

cal disease from lyssavirus infection, or excreting virus. This could be an explanation for the

high seroprevalence detected in free-ranging straw-colored fruit bat populations [54], as well

as in some other bat species (Table 3.2 [22])[73]. In populations that have a high seropreva-

lence, protection against lyssavirus infection is thus high, so prevalence of virus infection is

low, and the low level of lyssavirus detection reported can hence be expected [74]. We suggest

that high seroprevalence in combination with low virus prevalence might occur when bats in

roosts experience lyssavirus exposure in the absence of productive infection. This could be

through exposure to high titers of virus (as in our high titer groups) or if multiple exposures to

low virus titers occurred and stimulated high antibodies responses.

In our experiment (Fig 2), and that of others using RABV [31,45], a minority of bats with

VNA died. An explanation is that in these cases, VNA had developed too late relative to the

extent of lyssavirus infection in the CNS. Besides the timing of VNA development, the ability

of VNA to cross the blood-brain barrier might be important for the chance of survival. In a

study with eight dogs experimentally infected with RABV, those that died only had VNA in

the serum, while those that survived also had VNA in the CNS fluid [75]. In that study, dogs

that had survived the experiment had lesions in the brain, suggesting RABV had reached the

brain before being cleared by the immune response. In bats, the presence of lyssavirus-specific

antibodies in the cerebro-spinal fluid has not been investigated.

The method of dissemination of LBV within the straw-colored fruit bat is most likely simi-

lar to that of RABV in other mammals, i.e. via synaptically connected neurons. Virus was inoc-

ulated into the masseter muscle and was detected in the brains of bats that became rabid.

Thus, possible routes of virus spread from the inoculation site (masseter muscle) to the brain

(Table 5) can be deduced. A time course experiment would elucidate which of these routes are

taken by LBV, and this would help us to understand where virus enters the central nervous sys-

tem, which would help to explain or predict clinical signs [48]. Likewise, the detection of virus

in certain peripheral structures away from the inoculation site can be used to infer which

routes of spread the virus might have taken from the brain to these sites (Table 6). Virus detec-

tion in the otic ganglion of the salivary gland, and in the ganglion of the tongue indicates LBV

spread from the brain to the periphery via parasympathetic motor neurons, which is consistent

with the results of our previous experimental infection of straw-colored fruit bats with LBV

[55]. Virus detection in the taste buds of the tongue indicates that LBV was also able to spread

Table 5. Possible neuronal routes for Lagos bat virus to spread from the intramuscular inoculation site to the brain (centripetal spread).

Potential routes for centripetal spread of LBVs from intramuscular inoculation site to brain

Innervation of masseter muscle Characteristics of neuronal route

Peripheral site of

inoculation

Specific nucleus General location of

nucleus in CNS

Route (nerves & ganglia) Number of

synapses to pass

Division of nervous system

involved

Masseter muscle Motor nucleus of the trigeminal

nerve in the brainstem

Motor medulla Trigeminal nerve (via

neuromuscular junction)

1 Somatic motor

Rostral sensory mesencephalic

nucleus

Sensory medulla Trigeminal nerve (via

neuromuscular spindle)

1 Somatic sensory

Motor nucleus of the trigeminal

nerve in the brainstem

Motor medulla Trigeminal nerve 2 Parasympathetic motor

Motor nucleus of the trigeminal

nerve in the brainstem

Motor medulla Trigeminal nerve 2 Sympathetic motor

Rostral sensory mesencephalic

nucleus

Sensory medulla Trigeminal nerve 1 Visceral sensory

https://doi.org/10.1371/journal.pntd.0008898.t005
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via special sensory neurons, from which it could infect the neuroepithelial cells that comprise

the taste bud. A better understanding of the types of neurons and the types of synapses that lys-

saviruses use for dissemination in the host will enable us to better predict the sequence of lyssa-

virus spread within the host’s body after exposure at a certain location. This could help in the

management and costs of post exposure prophylaxis in people [48].

In general, the virus distribution pattern and lesions in our study were comparable to those

of our naturally-infected bat (Table 4) [56]. The virus distribution pattern was most similar to

the naturally-infected bat for bats infected with 102.1 and 100.1 TCID50 LBV doses. This indi-

cates that, in addition to successfully resulting in productive infection, the middle dose results

in a course of infection that may mimic natural LBV infection in the straw-colored fruit bat.

There was one important exception regarding the antigen distribution pattern: salivary gland

epithelium was positive in the naturally-infected bat, but not in any of our experimentally-

infected bats. In another straw-colored fruit bat naturally infected with LBV, salivary gland

epithelium was also positive [74]. Possible reasons for a lack of salivary gland epithelium infec-

tion in our experiment include the bats dying or being euthanized before the infection could

reach the salivary gland epithelial cells, and an inability of our LBV strain to infect salivary

gland epithelial cells. Some authors (e.g., [47,76]) used viruses isolated from the oral cavity

instead of from the brain for experimental infection studies; this may ensure that viruses are

from a population that is able to infect cells important for excretion [55].

In general, detection of viral RNA and detection of viral antigen (RT-qPCR/ Immunohis-

tochemistry) did not match closely for the diagnosis of LBV infection in extra-cephalic organs

(S2 Table). Neither method seemed consistently more sensitive than the other. This is different

from our previous experiment in which RT-qPCR seemed more sensitive than immunohis-

tochemistry in extra-cephalic organs, and where these results generally matched those for

Table 6. Possible neuronal routes of spread of Lagos bat virus from the brain to the periphery (centrifugal spread).

Potential routes for centrifugal spread of LBVs from brain to periphery

Origin in CNS Characteristics of neuronal route

Peripheral location where Lagos bat

virus was detected by

immunohistochemistry

Specific nucleus General

location of

nucleus in CNS

Route (nerves & ganglia) Number of

synapses to

pass

Division of nervous

system involved

Tongue ganglion Salivatory Motor medulla Chorda tympani and glossopharyngeal

nerves

1 Parasympathetic

motor

Otic ganglion (salivary gland) Inferior salivatory Motor medulla Chorda tympani and glossopharyngeal

nerves

1 Parasympathetic

motor

Cardiac plexi at base of hearta Dorsal motor nucleus

of vagus nerve

Motor medulla Vagus nerve 1 Parasympathetic

motor

Cranial four to five

segments thoracic

spinal cord

Spinal cord Cervical paravertebral sympathetic trunk

and postganglionic fibers

2 Sympathetic motor

Taste buds on tongue Solitary tract Sensory

medulla

Geniculate, petrosal and nodosal ganglia 2 Special sensory

Myoepithelium of parotid or

submandibular salivary glandb
Intermediate horn grey

matter of spinal cord,

T1 level

Spinal cord Ventral root of spinal cord, cranial

cervical ganglion

2 Sympathetic motor

Salivatory Motor medulla Parotid gland: cranial nerve IX and otic

ganglion; submandibular: cranial nerve

VII and submandibular ganglion

2 Parasympathetic

motor

a More than one route possible because of innervation of the nervous plexi by both parasympathetic and sympathetic nervous systems.
b Virus antigen was detected here in the naturally infected bat, not in the experimentally infected bats.

https://doi.org/10.1371/journal.pntd.0008898.t006
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tissues in which ganglia were usually present in microscopy slides, such as heart and intestine

[55]. The inconsistency between the two different methods might be caused by the relatively

abundant localization of the virus in neuronal cell bodies, which are not evenly spread in tissue

samples. Hence the detection of virus is dependent on the chance that an infected neuron cell

body ends up in the sample examined. This should be taken into account when the extra-

cephalic spread of lyssaviruses is studied.

Both salivary gland and tongue are expected to be virus excretion sites in lyssavirus-infected

bats [48]. In our straw-colored fruit bat that was naturally infected with LBV [56], as well as

another published report [74], salivary gland epithelial cells and tongue epithelial cells were anti-

gen positive. For all but one of our rabid bats, we showed that virus was present in these organs

(Table 3) through the detection of viral RNA, the detection of infectious virus by isolation or by

the detection of virus antigen. Tongue (10 of 11) tested positive much more commonly than sal-

ivary gland (5 of 11) across all techniques. Also, Ct values were generally lower for tongue

(mean 35) than for salivary gland (mean 39), suggesting that there was a higher number of virus

copies in tongue than in salivary gland tissue. Data from vampire bats (Desmodus rotundus)
infected with RABV indicate the possibility that the tongue is the major site of virus shedding

[77]. Also, lyssavirus was detected in the tongues of experimentally [32] and naturally-infected

European bats [78]. On the other hand, Allendorf et al [50] showed salivary glands as being

more often RT-hnPCR positive than tongues in bats of different species naturally infected with

RABV. Davis et al [79] detected virus in tongue and salivary gland with a similar frequency and

at similar Ct values in silver-haired bats (Lasionycteris noctivagans) experimentally infected with

RABV. Overall, our results suggest that tongue is a more important tissue for virus excretion

than salivary gland for LBV in the straw-colored fruit bat. Further studies of natural infection

with this virus-host combination are needed to confirm our results.

The finding of virus in the surface epithelium of tongues, especially, suggests virus shedding

could have occurred in our bats, at least by the time of death. Still, it was not possible to con-

firm virus excretion via oral swabs that were taken shortly before, or at, the time of death and

when the bats were rabid. This concurs with the results of our previous experiment in which

we inoculated straw-colored fruit bats with LBV via the intra-cranial route [55]. Here, also,

even though virus was detected in tongue surface epithelium, we were unable to detect virus

in oral swabs. Our lack of detection of beta-actin in 14 (14%) of our samples, might suggest

RNA extraction failed, but this would explain the lack of detection of lyssavirus in only a

minor proportion of our samples. There are several other possible explanations for the lack of

detection of viral excretion, as outlined previously by Suu-Ire et al [55]. First, IHC detection of

lyssavirus antigen in oral tissues may be more sensitive than RT-hnPCR detection of lyssaviral

RNA in oral swabs. Second, although there was virus in tongue surface epithelium, there

might have been no excretion into the oral cavity, although this does not fit well with what is

known of the pathogenesis of other lyssaviral infections [48]. Third, it might be that virus

excretion was intermittent and oral swabs were taken at a time when virus was not being

excreted. Intermittent excretion has been proposed to explain alternating positive and negative

results of serially collected oral swabs in other experimental lyssavirus infections in bats [26].

However, virus was not detected by RT-hnPCR in any of our oral swabs. Fourth, there may

have been loss or degradation of viral RNA in oral swab samples during transport or process-

ing. LBV has been detected in an oral swab of a naturally infected straw-colored fruit bat previ-

ously [74], showing that this is technically possible. Because virus could not be detected in oral

swabs, time taken post-inoculation until virus excretion, if it occurred, could not be ascer-

tained or linked to the timing of other factors, such as antibody response, or onset of clinical

signs.
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Overall, our results indicate that the outcomes of infection in straw-colored fruit bats are,

in general, not different from those for RABV infection in other species. Hence, people

exposed to LBV should be treated. RABV vaccination and PEP are not likely to protect against

LBV, so there is a need to develop treatments that do work for exposure to LBV and other phy-

logroup 2 lyssaviruses [80]. The LBV dose that most commonly leads to infection in straw-col-

ored fruit bats via the intramuscular (masseter muscle) route of inoculation follows the

Goldilocks principle. With the middle virus dose, 102.1 TCID50, nearly the whole course of lys-

savirus infection, from site of entry to site of exit, is replicated. Therefore, intramuscular inocu-

lation of 102.1 TCID50 of the Ghana strain of LBV in straw-colored fruit bats is a promising

experimental model to increase our understanding of the dynamics of lyssavirus infections in

bats.

Materials and methods

Ethics statement (experiment)

Experimental procedures were approved beforehand by the Wildlife Division of the Forestry

Commission of Ghana, the Institutional Review Board of Noguchi Memorial Institute for

Medical Research, University of Ghana, Legon and the Ethics Committee of the Zoological

Society of London, U.K. (license number WLE638).

Experimental set up

We inoculated five different virus doses, differing by ten-fold steps from 100.1 to 104.1 median

tissue culture infectious dose (TCID50), into straw-colored fruit bats in order to find the virus

dose leading to the highest rate of infection. The pathogenesis of LBV infection was evaluated

by observation for clinical signs, by the testing of oral swabs and tissue samples for virus pres-

ence, the sequential taking of blood for antibody detection and by the examination of tissues

for lesions. If LBV infection occurred, lesions and virus antigen distribution were compared

with those in a naturally-infected bat, to test if the observed experimental infection mimicked

a natural infection.

Although the natural routes of infection are not known for LBV in straw-colored fruit bats,

we chose intramuscular inoculation because this is the most-commonly used route of inocula-

tion for lyssavirus experiments [48]. The masseter muscle was chosen because it is easily iden-

tifiable and because we considered it a muscle likely to be bitten by fighting bats and, hence, a

likely natural route of infection. The course of infection in inoculated bats was followed until

general paresis was reached in order to provide maximum time for the virus to spread from

muscle to brain and peripheral sites, including potential site(s) of excretion, and to determine

whether bats were able to survive infection. Thus, virus antigen distribution was examined at

the end stage of disease. Oral swabs and blood samples were taken regularly throughout the

experiment, to be able to test when bats excrete virus in relation to the time of inoculation, the

start of clinical signs, humoral immune response and death.

Virus preparation (experiment)

A virus stock was prepared and titrated according to standard methods [61]. The virus was

from a phylogenetic lineage A of LBV. It was isolated from the brain of a naturally-infected

straw-colored fruit bat in Kumasi, Ghana (GH 325, FLI lab. No.: 31225, INSDC sequence data-

bases LN849915, GenBank: LN849915.1 [56]). The virus was passaged three times in baby

hamster kidney (BHK) cells. It reached an infectious virus titer of 107.25 TCID50 per ml. The

volume of the inoculation dose per bat was 30 μl. The neat dose was 104.1 TCID50. For each
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subsequent dose, the virus suspension was diluted 10-fold in minimal essential medium

(MEM), until a dose of 100.1 TCID50 was obtained.

Bats (experiment)

Bats were obtained from a closed captive breeding colony that is maintained in Ghana [81]

and which has tested free of LBV [55]. The bats used in this experiment were all captive-bred

and each one tested negative for antibodies against LBV using a modified version of the fluo-

rescent antibody virus neutralization test with a lineage A LBV as the challenge virus [54] at

the beginning of the study. Age class was based on the approximate date of birth as per the

microchip number: all captive bats were caught-up quarterly and any new pups or juveniles

were microchipped. Housing and care were as described previously [55]. Twenty bats, all male

and 1–2 years old, were randomly assigned to one of five groups (four bats in each group) (S1

Table). The bats in each of the five dose groups were inoculated intramuscularly in the left

masseter muscle with 30 μl of one of the five different virus doses. Bats were implanted with

transponders to allow individual identification.

Clinical examination and sampling (experiment)

Bats were initially observed twice daily, at 07.00 and at 16.00 GMT, for the presence of clinical

signs. After the first occurrence of clinical signs, frequency of observations was increased to

every two hours, day and night. Observers were unaware of the group the bat was in.

Blood samples (0.5 ml) from the propatagial vein were taken at 2 days, 1 week, and 1½
weeks pi, and then at 2, 2½, 3½, 4½, 6½, 8½, 10½, and 12½ weeks pi (day 90 pi). Oral swabs

(individually wrapped 2.5 mm diameter sterile cotton tip [Fisher Ltd.]) were taken once daily

until 22 days pi, then at days 26, 33, 61, 90, 104, 117, and 146 pi and at the time of euthanasia

or at the end of the experiment (day 160 or 161 pi).

Oral swabs (individually wrapped 2.5 mm diameter cotton-tipped, Fisher Scientific Ltd.)

were collected in RNAlater (Ambion) and in minimal essential medium, for virus RNA detec-

tion and virus isolation, respectively. Swabs were tested for the presence of virus RNA in the

following ways: (1) if the bat died during the course of the experiment, all swabs available were

tested; (2) if the bat survived until the end of the experiment, only the oral swabs taken at the

time of necropsy were tested. The experiment was terminated at day 160 or 161 pi, which was

99 or 100 days after the last bat had died of rabies, at day 61 pi. Bats that survived until day 160

or 161 pi were euthanized and sampled according to the same protocol as clinically affected

bats. Bats were euthanized with sodium pentobarbital (0.4 ml/kg body weight, Animal Care

Ltd, UK).

Serology (experiment)

Blood samples were centrifuged (6000 g, 15 min; Eppendorf-Netherler-Hinz, GmbH, Ger-

many). Serum was removed with a micropipette. Prior to freezing at -70˚C, sera were heat-

treated (56˚C, 30 min) to inactivate pathogens and residual complement. A modified fluores-

cent antibody virus neutralization test [54] was used for the detection of LBV lineage A specific

antibodies. The lack of accurately-titered control sera meant that all neutralizing antibody lev-

els were expressed as reciprocal titers, which were calculated using the Spearman–Karber

method. Rabbit sera containing antibodies directed against LBV lineage A were used as posi-

tive controls. We did not have access to true specific pathogen free bat sera, and as Lagos bat

virus is absent in Europe, we used dog sera from unvaccinated healthy European dogs as nega-

tive controls. Bats were considered seropositive if their sera neutralized LBV lineage A at a

reciprocal titer higher than 16.
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Pathological examination (experiment)

Necropsies and tissue sampling were performed according to a standard protocol, approxi-

mately 1 to 6 hours after death. At necropsy, a standard range of tissues (see below) was col-

lected (1) fixed in neutral-buffered 10% formalin for histological examination, (2) in plain dry

tubes for virus isolation and viral RNA detection. The following tissue samples were collected:

brain (rostral cerebrum, hippocampus, cerebellum, medulla oblongata in separate tubes for

virological analysis, the remainder of brain for histological analysis), salivary gland (usually

parotid, but sometimes submandibular), tongue, heart, lung, liver, kidney, spleen, submandib-

ular lymph node, duodenum, jejunum and colon. Each tissue was collected using a new pair of

disposable forceps and a new scalpel blade on an individual gauze pad to prevent cross-con-

tamination. For the tissues for histological examination, the formalin was replaced after two or

three days to enhance fixation; the formalin-fixed samples were stored at room temperature.

The plain samples in dry tubes were flash-frozen at -70˚C.

Virological examination (experiment)

A range of tests were performed in biosafety level 3 laboratories at the Animal and Plant

Health Agency, U.K. and at the Friedrich Loeffler Institute, Germany, as described below:

Reverse transcription-PCR To obtain RNA from tissues, a small piece (ca. 50μg) of each organ

was homogenized with a 5 mm steel bead in 500 μl MEM with a homogenizer (Tissue Lyser II

Qiagen, Hilden, Germany) at 3 minutes for 30 Hz. Homogenates were clarified by centrifugation

(500 g, 5 min). The clarified supernatant was split and then subject to virus isolation (below) and

RNA extraction. For RNA extraction the NucleoSpin RNA kit (Macherey-Nagel GmbH & Co.

KG, Düren, Germany) was used according to the manufacturer’s instructions and RNA was

stored at −80˚C until use. To obtain RNA from oral swabs, oral swabs stored in RNAlater were

used. Extraction was performed with High Pure RNA Isolation kit (with poly A), following manu-

facturer’s recommendations. All brain samples from all bats included in the experiment, and

extra-encephalic tissues of clinically affected bats, were tested using RT-qPCR, according to previ-

ously described methods [82,83] with a probe specific for Lagos bat viruses from lineages A, B and

C: [TxRd]AMAAGATTGTTTTCARGGTKCAYAATCA[BHQ2]. All oral swabs of clinically

affected bats were tested using RT-qPCR according to Marston et al. [84]. As a positive internal

control for RNA extraction, we performed RT-qPCR for beta actin on each extracted sample.

Fluorescent antibody test Touch impressions on glass microscope slides of three different

parts of frozen brain (hippocampus, cerebellum, medulla oblongata) of all bats were made and

stained with fluorescein-isothiocyanate (FITC)-conjugated anti-rabies mouse monoclonal

antibody (Fujirebio Diagnostics, USA, anti-N) [61]. A rabies-virus-positive mouse brain was

used as a positive control. The brain of an uninfected mouse was used as a negative control.

Rabies Tissue Culture Infection Test. The presence of viable virus was confirmed with the

rabies tissue culture infection test (RTCIT) essentially as described [85]. Tissue samples were

prepared as described (above). Supernatants were added to mouse neuroblastoma cells (Na 42/

13, FLI Cat. No.0229) which were then incubated at 37˚C in 5% CO2 in cell culture flasks and

control dishes for three days. After three days the control dishes were fixed and checked for

lyssavirus presence using the FAT. In case of negative results, supernatant was discarded and

cells were passaged as above. Three consecutive passages with negative result ruled out the

presence of viable virus in the sample.

Histology and immunohistochemistry (experiment and natural infection)

The formalin-fixed tissues were embedded in paraffin wax, cut in 4-μm-thick serial sections,

routinely stained with hematoxylin and eosin and examined using a light microscope for the
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detection of microscopic lesions. Immunohistochemistry was performed for the detection of

lyssaviral antigen [86], as described previously [55]. The brain of an LBV-infected straw-col-

ored fruit bat from a previous experiment [55] was included as a positive control. Immunohis-

tochemistry was performed on samples of brain from all bats, and only on other organ

samples of those bats that had positive RT-qPCR results for the brain.

Naturally infected bat

An apparently-healthy free-ranging straw-colored fruit bat was captured near the zoo of

Kumasi on 4 May 2011 (GH235 & V15-373) [56]. It was anesthetized and euthanized by exsan-

guination. The bat was not examined for the presence of gross lesions. A range of tissue sam-

ples (brain, lung, intestine, salivary gland [not specified], tongue, kidney, liver, spleen) was

fixed in neutral-buffered 10% formalin for histological examination and frozen at –70˚C in

plain dry tubes for virus isolation. This bat was part of a larger study to determine virus pres-

ence in a colony of straw-colored fruit bats in Kumasi, Ashantia Region, Ghana. The brain of

this bat was the only one of 600 (frozen) bat brain samples that tested positive by RT-PCR for

the presence of lyssavirus [56]. The Lagos bat virus that was cultured from the brain of this bat

was the virus used to inoculate the bats in the current study. Formalin-fixed tissues were pro-

cessed for the detection of lesions and virus antigen with light microscopy as described above

(‘Histology and immunohistochemistry’). As tissues had been stored in formalin for over three

years, antigen retrieval was increased by boiling slides in citric acid buffer for 20 minutes, in

contrast to the 10 minutes for the tissues of the experimental bats. A small part of the brain, at

the level of the hippocampus, was available for microscopy.

Supporting information

S1 Text. Incidental lesions detected in bats from the experiment and the natural-infected

bats.

(DOCX)

S1 Table. Age category and body weight of bats inoculated with different doses of Lagos

bat virus.

(XLSX)

S2 Table. Virus RNA and antigen detection (RT-qPCR/Immunohistochemistry) in extra-

cephalic organs of bats from the experiment do not match well.

(XLSX)

S1 Fig. Microscopy figure of naturally infected straw-colored fruit bat salivary gland.

Mucous salivary gland acini separated by septa are shown. One of the lining myoepithelial

cells expresses lyssavirus antigen (red granules). Lyssavirus IHC stain. Original magnification

100x objective.

(TIF)

S2 Fig. Microscopy figure of skeletal muscle in the tongue of a naturally infected straw-col-

ored fruit bat. Antigen positive granules are interpreted as being localized in neuromuscular

junctions, because the positive granules form discrete aggregates rather than being dispersed

evenly throughout the cytoplasm of the myocytes. Lyssavirus IHC stain. Original magnifica-

tion 40x objective.

(TIF)
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