16 research outputs found

    The effect of temperature on generic stable periodic structures in the parameter space of dissipative relativistic standard map

    Full text link
    In this work, we have characterized changes in the dynamics of a two-dimensional relativistic standard map in the presence of dissipation and specially when it is submitted to thermal effects modeled by a Gaussian noise reservoir. By the addition of thermal noise in the dissipative relativistic standard map (DRSM) it is possible to suppress typical stable periodic structures (SPSs) embedded in the chaotic domains of parameter space for large enough temperature strengths. Smaller SPSs are first affected by thermal effects, starting from their borders, as a function of temperature. To estimate the necessary temperature strength capable to destroy those SPSs we use the largest Lyapunov exponent to obtain the critical temperature (TCT_C) diagrams. For critical temperatures the chaotic behavior takes place with the suppression of periodic motion, although, the temperature strengths considered in this work are not so large to convert the deterministic features of the underlying system into a stochastic ones.Comment: 8 pages and 7 figures, accepted to publication in EPJ

    Early mortality and overall survival in oncology phase I trial participants: can we improve patient selection?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Patient selection for phase I trials (PIT) in oncology is challenging. A typical inclusion criterion for PIT is 'life expectancy > 3 months', however the 90 day mortality (90DM) and overall survival (OS) of patients with advanced solid malignancies are difficult to predict.</p> <p>Methods</p> <p>We analyzed 233 patients who were enrolled in PIT at Princess Margaret Hospital. We assessed the relationship between 17 clinical characteristics and 90DM using univariate and multivariate logistic regression analyses to create a risk score (PMHI). We also applied the Royal Marsden Hospital risk score (RMI), which consists of 3 markers (albumin < 35g/L, > 2 metastatic sites, LDH > ULN).</p> <p>Results</p> <p>Median age was 57 years (range 21-88). The 90DM rate was 14%; median OS was 320 days. Predictors of 90DM were albumin < 35g/L (OR = 8.2, p = 0.01), > 2 metastatic sites (OR = 2.6, p = 0.02), and ECOG > 0 (OR = 6.3, p = 0.001); all 3 factors constitute the PMHI. To predict 90DM, the PMHI performed better than the RMI (AUC = 0.78 vs 0.69). To predict OS, the RMI performed slightly better (RMI ≥ 2, HR = 2.2, p = 0.002 vs PMHI ≥ 2, HR = 1.6, p = 0.05).</p> <p>Conclusions</p> <p>To predict 90DM, the PMHI is helpful. To predict OS, risk models should include ECOG > 0, > 2 metastatic sites, and LDH > ULN. Prospective validation of the PMHI is warranted.</p

    Listening to a conversation with aggressive content expands the interpersonal space

    Get PDF
    The distance individuals maintain between themselves and others can be defined as ‘interpersonal space’. This distance can be modulated both by situational factors and individual characteristics. Here we investigated the influence that the interpretation of other people interaction, in which one is not directly involved, may have on a person’s interpersonal space. In the current study we measured, for the first time, whether the size of interpersonal space changes after listening to other people conversations with neutral or aggressive content. The results showed that the interpersonal space expands after listening to a conversation with aggressive content relative to a conversation with a neutral content. This finding suggests that participants tend to distance themselves from an aggressive confrontation even if they are not involved in it. These results are in line with the view of the interpersonal space as a safety zone surrounding one’s body

    Dissipation of Knowledge and the Boundaries of the Multinational Enterprise

    Full text link

    The Psychological Science Accelerator: Advancing Psychology Through a Distributed Collaborative Network

    Get PDF
    Source at https://doi.org/10.1177/2515245918797607.Concerns about the veracity of psychological research have been growing. Many findings in psychological science are based on studies with insufficient statistical power and nonrepresentative samples, or may otherwise be limited to specific, ungeneralizable settings or populations. Crowdsourced research, a type of large-scale collaboration in which one or more research projects are conducted across multiple lab sites, offers a pragmatic solution to these and other current methodological challenges. The Psychological Science Accelerator (PSA) is a distributed network of laboratories designed to enable and support crowdsourced research projects. These projects can focus on novel research questions or replicate prior research in large, diverse samples. The PSA’s mission is to accelerate the accumulation of reliable and generalizable evidence in psychological science. Here, we describe the background, structure, principles, procedures, benefits, and challenges of the PSA. In contrast to other crowdsourced research networks, the PSA is ongoing (as opposed to time limited), efficient (in that structures and principles are reused for different projects), decentralized, diverse (in both subjects and researchers), and inclusive (of proposals, contributions, and other relevant input from anyone inside or outside the network). The PSA and other approaches to crowdsourced psychological science will advance understanding of mental processes and behaviors by enabling rigorous research and systematic examination of its generalizability
    corecore