10 research outputs found

    UTILIZING THE EMBODIMENT FUNCTION RELATION AND TOLERANCE MODEL FOR ROBUST CONCEPT DESIGN

    Get PDF
    The early use of Robust Design (RD) supports the development of product concepts with low sensitivity to variation, which offers advantages for reducing the risk of costly iterations. Due to the lack of approaches for early evaluation of product robustness, the embodiment-function-relation and tolerance (EFRT-) model was developed, which combines the contact and channel approach and tolerance graphs. The information exchange of both approaches offers a high potential for reliable robustness evaluation results. However, that potential currently relies unused, since the link between applicable robustness criteria and the extended information is missing. To solve this problem, four research steps were determined: (1) understanding of robustness, (2) collection of RD principles, (3) identification of EFRT-model information and (4) mapping of RD principles and information. The results show nine adapted RD principles, the identified model information for the robustness evaluation, the evaluation criteria as well as their mapping. Utilizing the mapping and the proposed criteria in this contribution, a more comprehensive robustness evaluation in early stages is enabled

    Utilization of system models in model-based systems engineering: definition, classes and research directions based on a systematic literature review

    No full text
    The use of system models within model-based systems engineering (MBSE) is essential for improved communication or system documentation. Previous publications have investigated further reuse of these system models, for example, transforming them directly into discipline-specific models for reuse. The authors refer to this as the term “Utilization” of system models. It aims the compensation of modelling efforts and a further integration of linked models within MBSE. Motivated by a lack of common understanding of this term, a systematic literature review of the state of the art is presented. With this systematic overview, a definition and classification system for different use cases and system life cycle stages are created. These are key results to support engineers and researchers in adopting existing or discovering new utilization approaches. This supports the mission of advanced systems engineering and aims the identification of new research directions coming along with SysML v2 and the advanced systems engineering methods
    corecore