50 research outputs found

    Measurement of edge electrostatic turbulence in the TCV tokamak plasma boundary

    Get PDF
    Almost since the first density profile measurements were made in the scrape-off layer (SOL) of the early tokamaks, it has been recognized that the rate of particle transport perpendicular to magnetic surfaces exceeds that expected on the basis of classical collisional diffusion by as much as three orders of magnitude. Plasma turbulence has rightfully been claimed as the origin of such large discrepancies, much as it has for enhanced (over classical or neoclassical) transport rates observed in the confined plasma. But in the SOL, the "bursty" or "blobby" nature of the measured density fluctuations is of a much higher amplitude than that found in the core, making large-scale, convective fluid turbulence a strong candidate mechanism. This thesis will demonstrate quantitatively and unequivocally, for the first time, that such interchange motions are indeed the driver for the edge density and particle flux fluctuations observed on the Tokamak a Configuration Variable (TCV). Since the principle driver of this turbulence is a curved magnetic field, with gradient direction matching that of the local edge plasma pressure profile, together with a region of open magnetic field lines, the interchange mechanism identified here is very likely to be the very same process at the root of transport in all tokamak SOLs. In showing that the measured turbulence driven cross-field particle flux in TCV is quantitatively consistent with interchange physics, a path is opened by which the anomalous transport rates might be estimated in a predictive way for larger tokamaks, like the ITER device, which are yet to be built but for which concerns are now being raised that such transport might lead to excessive plasma-wall interactions. Using a fast reciprocating Langmuir probe, fluctuation measurements have been made in the TCV low-field-side SOL across a wide range of ohmic discharges comprising variations in plasma shape and configuration (limiter and divertor), plasma current, confinement mode (L and H), plasma density, toroidal magnetic field direction and plasma fuel species (deuterium and helium). Statistical analysis of the time series is used to demonstrate a remarkable degree of similarity across the database and to show that the radial dependence of the probability distribution functions (PDFs) of flux and density fluctuations can be well approximated by the known Gamma and Lognormal analytic PDFs, characterized in terms only of the relative fluctuation levels. In the vicinity of the SOL-main chamber interface, where particles interact with the walls, the density fluctuations exhibit clear evidence of self-similarity over two orders of magnitude in frequency and a PDF which is universal in shape. The observed constancy of the correlation between density and poloidal field fluctuations in turn implies a universal PDF for the radial particle flux which moreover is found to scale almost linearly with the local mean density. Careful comparison of one particular case inside the experimental database with the results of 2D fluid turbulence simulations of the TCV SOL using the ESEL code developed at the RisĂž National Laboratory, Denmark has shown a remarkable level of agreement between theory and experiment when the simulation output time series is analyzed in exactly the same way as that applied to the tokamak data. Quantitative agreement between model and experiment has been found for radial profiles of mean values, fluctuation levels, PDF shapes, timescales and power spectra of both density and turbulent driven flux throughout the main SOL and even partially inside the separatrix. Automatically, this level of agreement also implies that the code output conforms quite closely to the Gamma and Lognormal distributions. Parallel SOL flow data have also been gathered simultaneously with the turbulence measurements. An extensive database of radial Mach flow profiles has been assembled, most notably including a direct comparison of the density dependence of the flow dynamics in carefully matched discharges with forward and reversed toroidal field. These constitute the first measurements of their kind in TCV and reveal the presence of very strong flows, up to Mach numbers of ∌ 0.6. The magnitude and direction of the measured flows is found to be surprisingly well described by neoclassical return parallel flows (Pfirsch-SchlĂŒter) compensating the poloidal ExB and diamagnetic drifts. Combining the forward and reversed field data uncovers a slight, field independent offset thought to originate from the excess transport, driven by the interchange motions, in the outboard midplane vicinity. The flow and fluctuation data have been combined to test the possible link between flow generation and turbulence first demonstrated from similar data on JET. No such correlations have been found on TCV throughout most of the SOL, supporting the finding that the neoclassical component can account for the majority of the measured parallel flow

    Scrape-off layer turbulence in TCV: Evidence in support of stochastic modelling.

    Get PDF
    Manuscript. Published version available in Plasma Physics and Controlled Fusion, vol. 58, no. 4Intermittent fluctuations in the TCV scrape-off layer have been investigated by analysing long Langmuir probe data time series under stationary conditions, allowing calculation of fluctuation statistics with high accuracy. The ion saturation current signal is dominated by the frequent occurrence of large-amplitude bursts attributed to filament structures moving through the scrape-off layer. The average burst shape is well described by a double-exponential wave-form with constant duration, while the waiting times and peak amplitudes of the bursts both have an exponential distribution. Associated with bursts in the ion saturation current is a dipole-shaped floating potential structure and radially outwards directed electric drift velocity and particle flux, with average peak values increasing with the saturation current burst amplitude. The floating potential fluctuations have a normal probability density function while the distributions for the ion saturation current and estimated radial velocity have exponential tails for large fluctuations. These findings are discussed in the light of prevailing theories for filament motion and a stochastic model for intermittent scrape-off layer plasma fluctuations

    IN SEARCH OF NEURAL MECHANISMS OF MIRROR NEURON DYSFUNCTION IN SCHIZOPHRENIA: RESTING STATE FUNCTIONAL CONNECTIVITY APPROACH

    Get PDF
    It has been repeatedly shown that schizophrenia patients have immense alterations in goal-directed behaviour, social cognition, and social interactions, cognitive abilities that are presumably driven by the mirror neurons system (MNS). However, the neural bases of these deficits still remain unclear. Along with the task-related fMRI and EEG research tapping into the mirror neuron system, the characteristics of the resting state activity in the particular areas that encompass mirror neurons might be of interest as they obviously determine the baseline of the neuronal activity. Using resting state fMRI, we investigated resting state functional connectivity (FC) in four predefined brain structures, ROIs (inferior frontal gyrus, superior parietal lobule, premotor cortex and superior temporal gyrus), known for their mirror neurons activity, in 12 patients with first psychotic episode and 12 matched healthy individuals. As a specific hypothesis, based on the knowledge of the anatomical inputs of thalamus to all preselected ROIs, we have investigated the FC between thalamus and the ROIs. Of all ROIs included, seed-to-voxel connectivity analysis revealed significantly decreased FC only in left posterior superior temporal gyrus (STG) and the areas in visual cortex and cerebellum in patients as compared to controls. Using ROI-to-ROI analysis (thalamus and selected ROIs), we have found an increased FC of STG and bilateral thalamus whereas the FC of these areas was decreased in controls. Our results suggest that: (1) schizophrenia patients exhibit FC of STG which corresponds to the previously reported changes of superior temporal gyrus in schizophrenia and might contribute to the disturbances of specific functions, such as emotional processing or spatial awareness; (2) as the thalamus plays a pivotal role in the sensory gating, providing the filtering of the redundant stimulation, the observed hyperconnectivity between the thalami and the STGs in patients with schizophrenia might explain the sequential overload with sensory inputs that leads to the abnormal cognitive processing

    COMPARISON BETWEEN 2D TURBULENCE MODEL ESEL AND EXPERIMENTAL DATA FROM AUG AND COMPASS TOKAMAKS

    Get PDF
    In this article we have used the 2D fluid turbulence numerical model, ESEL, to simulate turbulent transport in edge tokamak plasma. Basic plasma parameters from the ASDEX Upgrade and COMPASS tokamaks are used as input for the model, and the output is compared with experimental observations obtained by reciprocating probe measurements from the two machines. Agreements were found in radial profiles of mean plasma potential and temperature, and in a level of density fluctuations. Disagreements, however, were found in the level of plasma potential and temperature fluctuations. This implicates a need for an extension of the ESEL model from 2D to 3D to fully resolve the parallel dynamics, and the coupling from the plasma to the sheath

    Understanding and suppressing the near Scrape-OïŹ€ Layer heat flux feature in inboard-limited plasmas in TCV

    Get PDF
    In inboard-limited plasmas, the Scrape-OïŹ€ Layer (SOL) shows two regions: the near SOL, extending a few mm from the Last Closed Flux Surface (LCFS), characterized by a steep gradient of the parallel heat ïŹ‚ux radial proïŹle, and a far SOL, typically some cm wide, with ïŹ‚atter heat ïŹ‚ux proïŹles. The physics of the near SOL is investigated in TCV with two series of experiments featuring deuterium and helium plasmas, in which the plasma current, density and elongation have been varied. The parallel heat ïŹ‚ux proïŹles are measured on the limiter by means of infrared thermography. For the ïŹrst time, the near SOL is reported to disappear for low plasma current or at high density, for values of the SOL collisionality Îœlowast corresponding to a conduction-limited regime. The power in the near SOL ∆PSOL is shown to decrease with the normalized Spitzer resistivity Îœ as ∆PSOL ~ Μ−1. The ïŹ‚oating potential proïŹles, measured at the limiter using ïŹ‚ush-mounted Langmuir probes (LP), show the presence of non-ambipolar currents, and their relation to the presence of a velocity shear layer is discussed. The shearing rate is shown to strictly correlate with the power in the near SOL ∆PSOL, consistently with a recent theoretical model. Measurements of the near SOL on the Low Field Side (LFS) are performed using a reciprocating Langmuir probe (RP). The near SOL is reported to vanish simultaneously at the LFS and at the limiter. The near and far SOL widths are compared with the predictions from existing theoretical models, to which empirical corrections with resistivity and elongation are proposed

    New insights regarding the incidence, presentation and treatment options of aorto-oesophageal fistulation after thoracic endovascular aortic repair: the European Registry of Endovascular Aortic Repair Complications

    Get PDF
    OBJECTIVES To review the incidence, clinical presentation, definite management and 1-year outcome in patients with aorto-oesophageal fistulation (AOF) following thoracic endovascular aortic repair (TEVAR). METHODS International multicentre registry (European Registry of Endovascular Aortic Repair Complications) between 2001 and 2011 with a total caseload of 2387 TEVAR procedures (17 centres). RESULTS Thirty-six patients with a median age of 69 years (IQR 56-75), 25% females and 9 patients (19%) following previous aortic surgery were identified. The incidence of AOF in the entire cohort after TEVAR in the study period was 1.5%. The primary underlying aortic pathology for TEVAR was atherosclerotic aneurysm formation in 53% of patients and the median time to development of AOF was 90 days (IQR 30-150). Leading clinical symptoms were fever of unknown origin in 29 (81%), haematemesis in 19 (53%) and shock in 8 (22%) patients. Diagnosis could be confirmed via computed tomography in 92% of the cases with the leading sign of a new mediastinal mass in 28 (78%) patients. A conservative approach resulted in a 100% 1-year mortality, and 1-year survival for an oesophageal stenting-only approach was 17%. Survival after isolated oesophagectomy was 43%. The highest 1-year survival rate (46%) could be achieved via an aggressive treatment including radical oesophagectomy and aortic replacement [relative risk increase 1.73 95% confidence interval (CI) 1.03-2.92]. The survival advantage of this aggressive treatment modality could be confirmed in bootstrap analysis (95% CI 1.11-3.33). CONCLUSIONS The development of AOF is a rare but lethal complication after TEVAR, being associated with the need for emergency TEVAR as well as mediastinal haematoma formation. The only durable and successful approach to cure the disease is radical oesophagectomy and extensive aortic reconstruction. These findings may serve as a decision-making tool for physicians treating these complex patient

    Advances in Xmipp for cryo-electron microscopy: from Xmipp to Scipion

    Get PDF
    Xmipp is an open-source software package consisting of multiple programs for processing data originating from electron microscopy and electron tomography, designed and managed by the Biocomputing Unit of the Spanish National Center for Biotechnology, although with contributions from many other developers over the world. During its 25 years of existence, Xmipp underwent multiple changes and updates. While there were many publications related to new programs and functionality added to Xmipp, there is no single publication on the Xmipp as a package since 2013. In this article, we give an overview of the changes and new work since 2013, describe technologies and techniques used during the development, and take a peek at the future of the package

    Design and baseline characteristics of the finerenone in reducing cardiovascular mortality and morbidity in diabetic kidney disease trial

    Get PDF
    Background: Among people with diabetes, those with kidney disease have exceptionally high rates of cardiovascular (CV) morbidity and mortality and progression of their underlying kidney disease. Finerenone is a novel, nonsteroidal, selective mineralocorticoid receptor antagonist that has shown to reduce albuminuria in type 2 diabetes (T2D) patients with chronic kidney disease (CKD) while revealing only a low risk of hyperkalemia. However, the effect of finerenone on CV and renal outcomes has not yet been investigated in long-term trials. Patients and Methods: The Finerenone in Reducing CV Mortality and Morbidity in Diabetic Kidney Disease (FIGARO-DKD) trial aims to assess the efficacy and safety of finerenone compared to placebo at reducing clinically important CV and renal outcomes in T2D patients with CKD. FIGARO-DKD is a randomized, double-blind, placebo-controlled, parallel-group, event-driven trial running in 47 countries with an expected duration of approximately 6 years. FIGARO-DKD randomized 7,437 patients with an estimated glomerular filtration rate >= 25 mL/min/1.73 m(2) and albuminuria (urinary albumin-to-creatinine ratio >= 30 to <= 5,000 mg/g). The study has at least 90% power to detect a 20% reduction in the risk of the primary outcome (overall two-sided significance level alpha = 0.05), the composite of time to first occurrence of CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure. Conclusions: FIGARO-DKD will determine whether an optimally treated cohort of T2D patients with CKD at high risk of CV and renal events will experience cardiorenal benefits with the addition of finerenone to their treatment regimen. Trial Registration: EudraCT number: 2015-000950-39; ClinicalTrials.gov identifier: NCT02545049

    Current Research into Applications of Tomography for Fusion Diagnostics

    Get PDF
    Retrieving spatial distribution of plasma emissivity from line integrated measurements on tokamaks presents a challenging task due to ill-posedness of the tomography problem and limited number of the lines of sight. Modern methods of plasma tomography therefore implement a-priori information as well as constraints, in particular some form of penalisation of complexity. In this contribution, the current tomography methods under development (Tikhonov regularisation, Bayesian methods and neural networks) are briefly explained taking into account their potential for integration into the fusion reactor diagnostics. In particular, current development of the Minimum Fisher Regularisation method is exemplified with respect to real-time reconstruction capability, combination with spectral unfolding and other prospective tasks

    Omecamtiv mecarbil in chronic heart failure with reduced ejection fraction, GALACTIC‐HF: baseline characteristics and comparison with contemporary clinical trials

    Get PDF
    Aims: The safety and efficacy of the novel selective cardiac myosin activator, omecamtiv mecarbil, in patients with heart failure with reduced ejection fraction (HFrEF) is tested in the Global Approach to Lowering Adverse Cardiac outcomes Through Improving Contractility in Heart Failure (GALACTIC‐HF) trial. Here we describe the baseline characteristics of participants in GALACTIC‐HF and how these compare with other contemporary trials. Methods and Results: Adults with established HFrEF, New York Heart Association functional class (NYHA) ≄ II, EF ≀35%, elevated natriuretic peptides and either current hospitalization for HF or history of hospitalization/ emergency department visit for HF within a year were randomized to either placebo or omecamtiv mecarbil (pharmacokinetic‐guided dosing: 25, 37.5 or 50 mg bid). 8256 patients [male (79%), non‐white (22%), mean age 65 years] were enrolled with a mean EF 27%, ischemic etiology in 54%, NYHA II 53% and III/IV 47%, and median NT‐proBNP 1971 pg/mL. HF therapies at baseline were among the most effectively employed in contemporary HF trials. GALACTIC‐HF randomized patients representative of recent HF registries and trials with substantial numbers of patients also having characteristics understudied in previous trials including more from North America (n = 1386), enrolled as inpatients (n = 2084), systolic blood pressure &lt; 100 mmHg (n = 1127), estimated glomerular filtration rate &lt; 30 mL/min/1.73 m2 (n = 528), and treated with sacubitril‐valsartan at baseline (n = 1594). Conclusions: GALACTIC‐HF enrolled a well‐treated, high‐risk population from both inpatient and outpatient settings, which will provide a definitive evaluation of the efficacy and safety of this novel therapy, as well as informing its potential future implementation
    corecore