12 research outputs found

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    In Vivo Mutagenic Effect of Very Low Dose Radiation

    Get PDF
    Almost all of our knowledge about the mutational effect of radiation has come from high dose studies which are generally not relevant to public exposure. The pKZ1 mouse recombination mutagenesis assay enables study of the mutational effect of very low doses of low LET radiation (μGy to cGy range) in a whole animal model. The mutational end-point studied is chromosomal inversion which is a common mutation in cancer. We have observed 1) a non-linear dose response of induced inversions in pKZ1 mice exposed to a wide dose range of low LET radiation, 2) the ability of low priming doses to cause an adaptive response to subsequent higher test doses and 3) the effect of genetic susceptibility where animals that are heterozygous for the Ataxia Telangiectasia gene (Atm) exhibit different responses to low dose radiation compared to their normal litter-mates

    <sup>11</sup>CO bonds made easily for positron emission tomography radiopharmaceuticals

    No full text
    The positron-emitting radionuclide carbon-11 ((11)C, t1/2 = 20.3 min) possesses the unique potential for radiolabeling of any biological, naturally occurring, or synthetic organic molecule for in vivo positron emission tomography (PET) imaging. Carbon-11 is most often incorporated into small molecules by methylation of alcohol, thiol, amine or carboxylic acid precursors using [(11)C]methyl iodide or [(11)C]methyl triflate (generated from [(11)C]carbon dioxide or [(11)C]methane). Consequently, small molecules that lack an easily substituted (11)C-methyl group are often considered to have non-obvious strategies for radiolabeling and require a more customized approach. [(11)C]Carbon dioxide itself, [(11)C]carbon monoxide, [(11)C]cyanide, and [(11)C]phosgene represent alternative reactants to enable (11)C-carbonylation. Methodologies developed for preparation of (11)C-carbonyl groups have had a tremendous impact on the development of novel PET tracers and provided key tools for clinical research. (11)C-Carbonyl radiopharmaceuticals based on labeled carboxylic acids, amides, carbamates and ureas now account for a substantial number of important imaging agents that have seen translation to higher species and clinical research of previously inaccessible targets, which is a testament to the creativity, utility and practicality of the underlying radiochemistry

    Report on ISCTM Consensus Meeting on Clinical Assessment of Response to Treatment of Cognitive Impairment in Schizophrenia

    No full text
    If treatments for cognitive impairment are to be utilized successfully, clinicians must be able to determine whether they are effective and which patients should receive them. In order to develop consensus on these issues, the International Society for CNS Clinical Trials and Methodology (ISCTM) held a meeting of experts on March 20, 2014, in Washington, DC. Consensus was reached on several important issues. Cognitive impairment and functional disability were viewed as equally important treatment targets. The group supported the notion that sufficient data are not available to exclude patients from available treatments on the basis of age, severity of cognitive impairment, severity of positive symptoms, or the potential to benefit functionally from treatment. The group reached consensus that cognitive remediation is likely to provide substantial benefits in combination with procognitive medications, although a substantial minority believed that medications can be administered without nonpharmacological therapy. There was little consensus on the best methods for assessing cognitive change in clinical practice. Some participants supported the view that performance-based measures are essential for measurement of cognitive change; others pointed to their cost and time requirements as evidence of impracticality. Interview-based measures of cognitive and functional change were viewed as more practical, but lacking validity without informant involvement or frequent contact from clinicians. The lack of consensus on assessment methods was viewed as attributable to differences in experience and education among key stakeholders and significant gaps in available empirical data. Research on the reliability, validity, sensitivity, and practicality of competing methods will facilitate consensus

    11

    No full text
    The positron-emitting radionuclide carbon-11 ((11)C, t1/2 = 20.3 min) possesses the unique potential for radiolabeling of any biological, naturally occurring, or synthetic organic molecule for in vivo positron emission tomography (PET) imaging. Carbon-11 is most often incorporated into small molecules by methylation of alcohol, thiol, amine or carboxylic acid precursors using [(11)C]methyl iodide or [(11)C]methyl triflate (generated from [(11)C]carbon dioxide or [(11)C]methane). Consequently, small molecules that lack an easily substituted (11)C-methyl group are often considered to have non-obvious strategies for radiolabeling and require a more customized approach. [(11)C]Carbon dioxide itself, [(11)C]carbon monoxide, [(11)C]cyanide, and [(11)C]phosgene represent alternative reactants to enable (11)C-carbonylation. Methodologies developed for preparation of (11)C-carbonyl groups have had a tremendous impact on the development of novel PET tracers and provided key tools for clinical research. (11)C-Carbonyl radiopharmaceuticals based on labeled carboxylic acids, amides, carbamates and ureas now account for a substantial number of important imaging agents that have seen translation to higher species and clinical research of previously inaccessible targets, which is a testament to the creativity, utility and practicality of the underlying radiochemistry
    corecore