241 research outputs found

    Detection of nonthermal emission from the bow shock of a massive runaway star

    Get PDF
    The environs of massive, early-type stars have been inspected in recent years in the search for sites where particles can be accelerated up to relativistic energies. Wind regions of massive binaries that collide have already been established as sources of high-energy emission; however, there is a different scenario for massive stars where strong shocks can also be produced: the bow-shaped region of matter piled up by the action of the stellar strong wind of a runaway star interacting with the interstellar medium. We study the bow-shock region produced by a very massive runaway star, BD+43 3654, to look for nonthermal radio emission as evidence of a relativistic particle population. We observed the field of BD+43 3654 at two frequencies, 1.42 and 4.86 GHz, with the Very Large Array (VLA), and obtained a spectral index map of the radio emission. We have detected, for the first time, nonthermal radio emission from the bow shock of a massive runaway star. After analyzing the radiative mechanisms that can be at work, we conclude that the region under study could produce enough relativistic particles whose radiation might be detectable by forthcoming gamma-ray instruments, like CTA North.Comment: Accepted in Astronomy and Astrophysics Letter

    The origin of runaway stars

    Full text link
    Milli-arcsecond astrometry provided by Hipparcos and by radio observations makes it possible to retrace the orbits of some of the nearest runaway stars and pulsars to determine their site of origin. The orbits of the runaways AE Aurigae and mu Columbae and of the eccentric binary iota Orionis intersect each other about 2.5 Myr ago in the nascent Trapezium cluster, confirming that these runaways were formed in a binary-binary encounter. The path of the runaway star zeta Ophiuchi intersects that of the nearby pulsar PSR J1932+1059, about 1 Myr ago, in the young stellar group Upper Scorpius. We propose that this neutron star is the remnant of a supernova that occurred in a binary system which also contained zeta Oph, and deduce that the pulsar received a kick velocity of about 350 km/s in the explosion. These two cases provide the first specific kinematic evidence that both mechanisms proposed for the production of runaway stars, the dynamical ejection scenario and the binary-supernova scenario, operate in nature.Comment: 5 pages, including 2 eps-figures and 1 table, submitted to the ApJ Letters. The manuscript was typeset using aaste

    Solar-Type Post-T Tauri Stars in the Nearest OB Subgroups

    Full text link
    I discuss results from the recent spectroscopic survey for solar-type pre-MS stars in the Lower Centaurus-Crux (LCC) and Upper Centaurus-Lupus (UCL) OB subgroups by Mamajek, Meyer, & Liebert (2002, AJ, 124, 1670). LCC and UCL are subgroups of the Sco-Cen OB association, and the two nearest OB subgroups to the Sun. In the entire survey of 110 pre-main sequence stars, there exists only one Classical T Tauri star (PDS 66), implying that only ~1% of ~1 Msun stars are still accreting at age 13±\pm7 (1σ\sigma) Myr. Accounting for observational errors, the HRD placement of the pre-MS stars is consistent with the bulk of star-formation taking place within 5-10 Myr. In this contribution, I estimate conservative upper limits to the intrinsic velocity dispersions of the post-T Tauri stars in the LCC and UCL subgroups (<1.6 km/s and <2.2 km/s, respectively; 95% CL) using Monte-Carlo simulations of Tycho-2 proper motions for candidate subgroup members. I also demonstrate that a new OB subgroup recently proposed to exist in Chamaeleon probably does not.Comment: 8 pages, 2 figures, to appear in proceedings for "Open Issues in Local Star Formation and Early Stellar Evolution", eds. J. Gregorio-Hetem & J. Lepine. Minor edits (5/30/03

    Two Boehm-Vitense gaps in the main sequence of the Hyades

    Get PDF
    Hipparcos proper motions and trigonometric parallaxes allow the derivation of secular parallaxes which fix the distances to individual stars in the Hyades cluster to an accuracy of \sim 2 percent. The resulting color-absolute magnitude diagram for 92 high-fidelity single members of the cluster displays a very narrow main sequence, with two turn-offs and associated gaps. These occur at the locations where the onset of surface convection affects the B-V colors, as predicted by Boehm-Vitense thirty years ago. The new distances provide stringent constraints on the transformations of colors and absolute magnitudes to effective temperatures and luminosities, and on models of stellar interiors.Comment: 4 pages, 2 PostScript figures, LaTeX using aastex and emulateapj5.sty; accepted for publication in Astrophysical Journal Letter

    Open Clusters IC 4665 and Cr 359 and a Probable Birthplace of the Pulsar PSR B1929+10

    Full text link
    Based on the epicyclic approximation, we have simulated the motion of the young open star clusters IC 4665 and Collinder 359. The separation between the cluster centers is shown to have been minimal 7 Myr ago, 36 pc. We have established a close evolutionary connection between IC 4665 and the Scorpius-Centaurus association -- the separation between the centers of these structures was 200\approx200 pc 15 Myr ago. In addition, the center of IC 4665 at this time was near two well-known regions of coronal gas: the Local Bubble and the North Polar Spur. The star HIP 86768 is shown to be one of the candidates for a binary (in the past) with the pulsar PSR B1929+10. At the model radial velocity of the pulsar Vr=2±50V_r= 2\pm50 km s1^{-1}, a close encounter of this pair occurs in the vicinity of IC 4665 at a time of -1.1 Myr. At the same time, using currently available data for the pulsar B1929+10 at its model radial velocity Vr=200±50V_r=200\pm50 km s1^{-1}, we show that the hypothesis of Hoogerwerf et al. (2001) about the breakup of the ζ\zetaOph--B1929+10 binary in the vicinity of Upper Scorpius (US) about 0.9 Myr ago is more plausible.Comment: 19 pages, 8 figure

    Precision Astrometry with the Very Long Baseline Array: Parallaxes and Proper Motions for 14 Pulsars

    Full text link
    Astrometry can bring powerful constraints to bear on a variety of scientific questions about neutron stars, including their origins, astrophysics, evolution, and environments. Using phase-referenced observations at the VLBA, in conjunction with pulsar gating and in-beam calibration, we have measured the parallaxes and proper motions for 14 pulsars. The smallest measured parallax in our sample is 0.13+-0.02 mas for PSR B1541+09, which has a most probable distance of 7.2+1.3-1.1 kpc. We detail our methods, including initial VLA surveys to select candidates and find in-beam calibrators, VLBA phase-referencing, pulsar gating, calibration, and data reduction. The use of the bootstrap method to estimate astrometric uncertainties in the presence of unmodeled systematic errors is also described. Based on our new model-independent estimates for distance and transverse velocity, we investigate the kinematics and birth sites of the pulsars and revisit models of the Galactic electron density distribution. We find that young pulsars are moving away from the Galactic plane, as expected, and that age estimates from kinematics and pulsar spindown are generally in agreement, with certain notable exceptions. Given its present trajectory, the pulsar B2045-16 was plausibly born in the open cluster NGC 6604. For several high-latitude pulsars, the NE2001 electron density model underestimates the parallax distances by a factor of two, while in others the estimates agree with or are larger than the parallax distances, suggesting that the interstellar medium is irregular on relevant length scales. The VLBA astrometric results for the recycled pulsar J1713+0747 are consistent with two independent estimates from pulse timing, enabling a consistency check between the different reference frames.Comment: 16 pages, 9 figures, 4 tables; results unchanged; revised version accepted by Ap

    Identification of blue high proper motion objects in the Tycho-2 and 2MASS catalogues using Virtual Observatory tools

    Full text link
    With available Virtual Observatory tools, we looked for new bright blue high proper motion objects in the entire sky: white dwarfs, hot subdwarfs, runaway OB stars, and early-type stars in nearby young moving groups. We performed an all-sky cross-match between the optical Tycho-2 and near-infrared 2MASS catalogues with Aladin, and selected objects with proper motions >50mas/yr and colours Vt-Ks<-0.5mag with TOPCAT. We also collected multi-wavelength photometry, constructed the spectral energy distributions and estimated effective temperatures from fits to atmospheric models with VOSA for the most interesting targets. We assembled a sample of 32 bright blue high proper motion objects, including ten sdO/B subdwarfs, nine DA white dwarfs, five young early-type stars (two of which are runaway stars), two blue horizontal branch stars, one star with poor information, and five objects reported for the first time in this work. These last five objects have magnitudes Bt~11.0-11.6mag, effective temperatures ~24,000-30,000K, and are located in the region of known white dwarfs and hot subdwarfs in a reduced proper motion-colour diagram. We confirmed the hot subdwarf nature of one of the new objects, Albus 5, with public far-ultraviolet spectroscopic data obtained with FUSE.Comment: Published in Astronomy & Astrophysic

    CO emission and variable CH and CH+ absorption towards HD34078: evidence for a nascent bow shock ?

    Full text link
    The runaway star HD34078, initially selected to investigate small scale structure in a foreground diffuse cloud has been shown to be surrounded by highly excited H2. We first search for an association between the foreground cloud and HD34078. Second, we extend previous investigations of temporal absorption line variations (CH, CH+, H2) in order to better characterize them. We have mapped the CO(2-1) emission at 12 arcsec resolution around HD34078's position, using the 30 m IRAM antenna. The follow-up of CH and CH+ absorption lines has been extended over 5 more years. In parallel, CH absorption towards the reddened star Zeta Per have been monitored to check the homogeneity of our measurements. Three more FUSE spectra have been obtained to search for N(H2) variations. CO observations show a pronounced maximum near HD34078's position, clearly indicating that the star and diffuse cloud are associated. The optical spectra confirm the reality of strong, rapid and correlated CH and CH+ fluctuations. On the other hand, N(H2, J=0) has varied by less than 5 % over 4 years. We also discard N(CH) variations towards Zeta Per at scales less than 20 AU. Observational constraints from this work and from 24 micron dust emission appear to be consistent with H2 excitation but inconsistent with steady-state bow shock models and rather suggest that the shell of compressed gas surrounding HD34078, is seen at an early stage of the interaction. The CH and CH+ time variations as well as their large abundances are likely due to chemical structure in the shocked gas layer located at the stellar wind/ambient cloud interface. Finally, the lack of variations for both N(H2, J=0) towards HD34078 and N(CH) towards Zeta Per suggests that quiescent molecular gas is not subject to pronounced small-scale structure.Comment: 19 pages, 15 figures, accepted for publication in A&

    Nearby young single black holes

    Full text link
    We consider nearby young black holes formed after supernova explosions in close binaries whose secondary components are currently observed as the so-called runaway stars. Using data on runaway stars and making reasonable assumptions about the mechanisms of supernova explosions and binary breakup, we estimate the present position of nearby young black holes. For two objects, we obtained relatively small error regions (50\sim 50-100 deg2^2). The possibility of detecting these nearby young black holes is discussed.Comment: 14 pages with 7 figure
    corecore