299 research outputs found

    A representative sample of Be stars III: H band spectroscopy

    Get PDF
    We present H band (1.53 - 1.69 micron) spectra of 57 isolated Be stars of spectral types O9-B9 and luminosity classes III,IV & V. The HI Brackett (n-4) series is seen in emission from Br 11-18, and FeII emission is also apparent for a subset of those stars with HI emission. No emission from species with a higher excitation temperature, such as He II or CIII is seen, and no forbidden line emission is present. A subset of 12 stars show no evidence for emission from any species; these stars appear indistinguishable from normal B stars of a comparable spectral type. In general the line ratios constructed from the transitions in the range Br 11-18 do not fit case B recombination theory particularly well. Strong correlations between the line ratios with Br-gamma and spectral type are found. These results most likely represent systematic variations in the temperature and ionization of the circumstellar disc with spectral type. Weak correlations between the line widths and projected rotational velocity of the stars are observed; however no systematic trend for increasing line width through the Brackett series is observed.Comment: accepted for publication in A&A (this version correctly formatted

    Physical conditions in the gas phases of the giant HII region LMC-N11 unveiled by Herschel - I. Diffuse [CII] and [OIII] emission in LMC-N11B

    Full text link
    (Abridged) The Magellanic Clouds provide a nearby laboratory for metal-poor dwarf galaxies. The low dust abundance enhances the penetration of UV photons into the interstellar medium (ISM), resulting in a relatively larger filling factor of the ionized gas. Furthermore, there is likely a hidden molecular gas reservoir probed by the [CII]157um line. We present Herschel/PACS maps in several tracers, [CII], [OI]63um,145um, [NII]122um, [NIII]57um, and [OIII]88um in the HII region N11B in the Large Magellanic Cloud. Halpha and [OIII]5007A images were used as complementary data to investigate the effect of dust extinction. Observations were interpreted with photoionization models to infer the gas conditions and estimate the ionized gas contribution to the [CII] emission. Photodissociation regions (PDRs) are probed through polycyclic aromatic hydrocarbons (PAHs). We first study the distribution and properties of the ionized gas. We then constrain the origin of [CII]157um by comparing to tracers of the low-excitation ionized gas and of PDRs. [OIII] is dominated by extended emission from the high-excitation diffuse ionized gas; it is the brightest far-infrared line, ~4 times brighter than [CII]. The extent of the [OIII] emission suggests that the medium is rather fragmented, allowing far-UV photons to permeate into the ISM to scales of >30pc. Furthermore, by comparing [CII] with [NII], we find that 95% of [CII] arises in PDRs, except toward the stellar cluster for which as much as 15% could arise in the ionized gas. We find a remarkable correlation between [CII]+[OI] and PAH emission, with [CII] dominating the cooling in diffuse PDRs and [OI] dominating in the densest PDRs. The combination of [CII] and [OI] provides a proxy for the total gas cooling in PDRs. Our results suggest that PAH emission describes better the PDR gas heating as compared to the total infrared emission.Comment: Accepted for publication in Astronomy and Astrophysics. Fixed inverted line ratio in Sect. 5.

    A milestone toward understanding PDR properties in the extreme environment of LMC-30Dor

    Full text link
    More complete knowledge of galaxy evolution requires understanding the process of star formation and interaction between the interstellar radiation field and the interstellar medium in galactic environments traversing a wide range of physical parameter space. Here we focus on the impact of massive star formation on the surrounding low metallicity ISM in 30 Doradus in the Large Magellanic Cloud. A low metal abundance, as is the case of some galaxies of the early universe, results in less ultra-violet shielding for the formation of the molecular gas necessary for star formation to proceed. The half-solar metallicity gas in this region is strongly irradiated by the super star cluster R136, making it an ideal laboratory to study the structure of the ISM in an extreme environment. Our spatially resolved study investigates the gas heating and cooling mechanisms, particularly in the photo-dissociation regions where the chemistry and thermal balance are regulated by far-ultraviolet photons (6 eV< h\nu <13.6 eV). We present Herschel observations of far-infrared fine-structure lines obtained with PACS and SPIRE/FTS. We have combined atomic fine-structure lines from Herschel and Spitzer observations with ground-based CO data to provide diagnostics on the properties and the structure of the gas by modeling it with the Meudon PDR code. We derive the spatial distribution of the radiation field, the pressure, the size, and the filling factor of the photodissociated gas and molecular clouds. We find a range of pressure of ~ 10^5 - 1.7x10^6 cm^{-3} K and a range of incident radiation field G_UV ~ 10^2 - 2.5x10^4 through PDR modeling. Assuming a plane-parallel geometry and a uniform medium, we find a total extinction of 1-3 mag , which correspond to a PDR cloud size of 0.2 to 3pc, with small CO depth scale of 0.06 to 0.5pc. We also determine the three dimensional structure of the gas. (Abridged)Comment: 20 pages, 23 figures, accepted in A&

    Probing the mass-loss history of AGB and red supergiant stars from CO rotational line profiles. I. Theoretical model - Mass-loss history unravelled in VY CMa

    Get PDF
    Context: Mass loss plays a dominant role in the evolution of low mass stars while they are on the Asymptotic Giant Branch (AGB). The gas and dust ejected during this phase are a major source in the mass budget of the interstellar medium. Recent studies have pointed towards the importance of variations in the mass-loss history of such objects. Aims: By modelling the full line profile of low excitation CO lines emitted in the circumstellar envelope, we can study the mass-loss history of AGB stars. Methods: We have developed a non-LTE radiative transfer code, which calculates the velocity structure and gas kinetic temperature of the envelope in a self-consistent way. The resulting structure of the envelope provides the input for the molecular line radiative calculations which are evaluated in the comoving frame. The code allows for the implementation of modulations in the mass-loss rate. This code has been benchmarked against other radiative transfer codes and is shown to perform well and efficiently. Results: We illustrate the effects of varying mass-loss rates in case of a superwind phase. The model is applied to the well-studied case of VY CMa. We show that both the observed integrated line strengths as the spectral structure present in the observed line profiles, unambiguously demonstrate that this source underwent a phase of high mass loss (~ 3.2E-4 Msun/yr) some 1000 yr ago. This phase took place for some 100 yr, and was preceded by a low mass-loss phase (~ 1E-6 Msun/yr) taking some 800 yr. The current mass-loss rate is estimated to be in the order of 8E-5 Msun/yr. Conclusions: In this paper, we demonstrate that both the relative strength of the CO rotational line profiles and the (non)-occurrence of spectral structure in the profile offer strong diagnostics to pinpoint the mass-loss history.Comment: 18 pages, 10 figures, accepted for publication in "Astronomy & Astrophysics

    The effects of star formation on the low-metallicity ISM: NGC4214 mapped with Herschel/PACS spectroscopy

    Full text link
    We present Herschel/PACS spectroscopic maps of the dwarf galaxy NC4214 observed in 6 far infrared fine-structure lines: [C II] 158mu, [O III] 88mu, [O I] 63mu, [O I] 146mu, [N II] 122mu, and [N II] 205mu. The maps are sampled to the full telescope spatial resolution and reveal unprecedented detail on ~ 150 pc size scales. We detect [C II] emission over the whole mapped area, [O III] being the most luminous FIR line. The ratio of [O III]/[C II] peaks at about 2 toward the sites of massive star formation, higher than ratios seen in dusty starburst galaxies. The [C II]/CO ratios are 20 000 to 70 000 toward the 2 massive clusters, which are at least an order of magnitude larger than spiral or dusty starbursts, and cannot be reconciled with single-slab PDR models. Toward the 2 massive star-forming regions, we find that L[CII] is 0.5 to 0.8% of the LTIR . All of the lines together contribute up to 2% of LTIR . These extreme findings are a consequence of the lower metallicity and young, massive-star formation commonly found in dwarf galaxies. These conditions promote large-scale photodissociation into the molecular reservoir, which is evident in the FIR line ratios. This illustrates the necessity to move to multiphase models applicable to star-forming clusters or galaxies as a whole.Comment: Accepted for publication in the A&A Herschel Special Issu

    High Resolution Chandra Spectroscopy of Gamma Cassiopeia (B0.5IVe)

    Get PDF
    gamma Cas has long been famous for its unique hard X-ray characteristics. We report herein on a 53 ks Chandra HETGS observation of this target. An inspection of our spectrum shows that it is quite atypical for a massive star, with abnormally weak Fe XXV, XXVI lines, Ly-alpha lines of H-like species from Fe XVII, XXIII, XXIV, S XVI, Si XIV, Mg XII, Ne X, O VII, VIII, and N VII. Also, line ratios of the rif-triplet of for a few He-like ions XVII are consistent with the dominance of collisional atomic processes. Yet, the presence of Fe and Si fluorescence K features indicates that photoionization also occurs in nearby cold gas. The line profiles indicate a mean velocity at rest and a broadening of 500 km/s. A global fitting analysis of the line and continuum spectrum finds that there are 3-4 plasma emission components. The dominant hot (12 keV) component and has a Fe abundance of 0.22 solar. Some fraction of this component (10-30%) is heavily absorbed. The other 2-3 components, with temperatures 0.1, 0.4, 3 keV, are "warm," have a nearly solar composition, a lower column absorption, and are responsible for most other emission lines. The strength of the fluorescence features and the dual-column absorption model for the hot plasma component suggest the presence near the hot sites of a cold gas structure with a column density of 10^23 cm^-2. Since this value is consistent with theoretical estimates of the vertical disk column of this star, these attributes suggest that the X-rays originate near the star or disk. It is possible that the Fe anomaly in the hot component is related to the First Ionization Potential effect found in coronal structures around active cool stars. This would be yet another indication that the X-rays -rays are produced in the immediate vicinity of the Be star.Comment: 32 pages, 4 figures (Fig. 3 colorized.) To be published in 01/10/04 Astrophysical Journal, Main Journal; included figures and updated formattin

    Condensation of MgS in outflows from carbon stars

    Full text link
    The basic mechanism responsible for the widespread condensation of MgS in the outflows from carbon rich stars on the tip of the AGB is discussed with the aim of developing a condensation model that can be applied in model calculations of dust formation in stellar winds. The different possibilities how MgS may be formed in the chemical environment of outflows from carbon stars are explored by some thermochemical calculations and by a detailed analysis of the growth kinetics of grains in stellar winds. The optical properties of core-mantle grains with a MgS mantle are calculated to demonstrate that such grains reproduce the structure of the observed 30 μ\mum feature. These considerations are complemented by model calculations of circumstellar dust shells around carbon stars. It is argued that MgS is formed via precipitation on silicon carbide grains. This formation mechanism explains some of the basic observed features of MgS condensation in dust shells around carbon stars. A weak secondary peak at about 33 ... 36 μ\mum is shown to exist in certain cases if MgS forms a coating on SiC.Comment: 9 pages, 7 figure
    corecore