11 research outputs found

    Improving rainfall erosivity estimates using merged TRMM and gauge data

    Get PDF
    Soil erosion is a global issue that threatens food security and causes environmental degradation. Management of water erosion requires accurate estimates of the spatial and temporal variations in the erosive power of rainfall (erosivity). Rainfall erosivity can be estimated from rain gauge stations and satellites. However, the time series rainfall data that has a high temporal resolution are often unavailable in many areas of the world. Satellite remote sensing allows provision of the continuous gridded estimates of rainfall, yet it is generally characterized by significant bias. Here we present a methodology that merges daily rain gauge measurements and the Tropical Rainfall Measuring Mission (TRMM) 3B42 data using collocated cokriging (ColCOK) to quantify the spatial distribution of rainfall and thereby to estimate rainfall erosivity across China. This study also used block kriging (BK) and TRMM to estimate rainfall and rainfall erosivity. The methodologies are evaluated based on the individual rain gauge stations. The results from the present study generally indicate that the ColCOK technique, in combination with TRMM and gauge data, provides merged rainfall fields with good agreement with rain gauges and with the best accuracy with rainfall erosivity estimates, when compared with BK gauges and TRMM alone

    Multi-scale digital soil mapping with deep learning

    Get PDF
    We compared different methods of multi-scale terrain feature construction and their relative effectiveness for digital soil mapping with a Deep Learning algorithm. The most common approach for multi-scale feature construction in DSM is to filter terrain attributes based on different neighborhood sizes, however results can be difficult to interpret because the approach is affected by outliers. Alternatively, one can derive the terrain attributes on decomposed elevation data, but the resulting maps can have artefacts rendering the approach undesirable. Here, we introduce ‘mixed scaling’ a new method that overcomes these issues and preserves the landscape features that are identifiable at different scales. The new method also extends the Gaussian pyramid by introducing additional intermediate scales. This minimizes the risk that the scales that are important for soil formation are not available in the model. In our extended implementation of the Gaussian pyramid, we tested four intermediate scales between any two consecutive octaves of the Gaussian pyramid and modelled the data with Deep Learning and Random Forests. We performed the experiments using three different datasets and show that mixed scaling with the extended Gaussian pyramid produced the best performing set of covariates and that modelling with Deep Learning produced the most accurate predictions, which on average were 4–7% more accurate compared to modelling with Random Forests

    Long-Term Changes in Water Body Area Dynamic and Driving Factors in the Middle-Lower Yangtze Plain Based on Multi-Source Remote Sensing Data

    No full text
    The accurate monitoring of long-term spatial and temporal changes in open-surface water bodies offers important guidance for water resource security and management. In the middle and lower reaches of the Yangtze River, the monitoring of water body changes is especially critical due to the dense population and drastic climate change. Due to the complexity of the physical environment in which the water bodies are located, the advantages and disadvantages of various water body detection rules can vary in large-scale areas. In this paper, we use Landsat 5/7/8 data to extract the area of water bodies in the study area and analyze their spatial and temporal trends from 1984 to 2020 using the Google Earth Engine (GEE) platform. We propose an improved water body extraction rule based on an existing multi-indicator water body algorithm that combines impervious surface data and digital elevation model data. In this study, the performance of the improved algorithm was cross-validated using seven other water body indicator algorithms, and the results showed the following: (1) the rule accurately retained information about the water body while minimizing the interference of shadows on the extracted water body. (2) On the annual scale from 1984 to 2020, the open-surface water body dataset extracted using this improved rule showed that the turning point for the area of each water body type was 2011, with an overall decreasing trend in area before 2011 and an increasing trend in area after 2011, with the exception of special years, such as 1998. (3) The driving mechanism analysis showed that, overall, precipitation was positively correlated with the water body area and temperature was negatively correlated with the water body area. Additionally, human activities can have an impact on surface water dynamics. The key influencing factors are diverse for each water body type; it was found that seasonal water bodies were correlated with precipitation and paddy fields and permanent water bodies were correlated with temperature and urban construction. The accurate monitoring of the spatial and temporal dynamics of open-surface water performed in this study can shed light on the sustainable development of water resources and the environment

    Reconstruction of Gap-Free Land Surface Temperature at a 100 m Spatial Resolution from Multidimensional Data: A Case in Wuhan, China

    No full text
    Land surface temperatures (LST) are vital parameters in land surface–atmosphere interactions. Constrained by technology and atmospheric interferences, LST retrievals from various satellite sensors usually return missing data, thus negatively impacting analyses. Reconstructing missing data is important for acquiring gap-free datasets. However, the current reconstruction methods are limited for maintaining spatial details and high accuracies. We developed a new gap-free algorithm termed the spatial feature-considered random forest regression (SFRFR) model; it builds stable nonlinear relationships to connect the LST with related parameters, including terrain elements, land coverage types, spectral indexes, surface reflectance data, and the spatial feature of the LST, to reconstruct the missing LST data. The SFRFR model reconstructed gap-free LST data retrieved from the Landsat 8 satellite on 27 July 2017 in Wuhan. The results show that the SFRFR model exhibits the best performance according to the various evaluation metrics among the SFRFR, random forest regression and spline interpolation, with a coefficient of determination (R2) reaching 0.96, root-mean-square error (RMSE) of 0.55, and mean absolute error (MAE) of 0.55. Then, we reconstructed gap-free LST data gathered in Wuhan from 2016 to 2021 to analyze urban thermal environment changes and found that 2020 presented the coolest temperatures. The SFRFR model still displayed satisfactory results, with an average R2 of 0.91 and an MAE of 0.63. We further discuss and discover the factors affecting the visual performance of SFRFR and identify the research priority to circumvent these disadvantages. Overall, this study provides a simple, practical method for acquiring gap-free LST data to help us better understand the spatiotemporal LST variation process

    Dynamics of Vegetation Greenness and Its Response to Climate Change in Xinjiang over the Past Two Decades

    No full text
    Climate change has proven to have a profound impact on the growth of vegetation from various points of view. Understanding how vegetation changes and its response to climatic shift is of vital importance for describing their mutual relationships and projecting future land–climate interactions. Arid areas are considered to be regions that respond most strongly to climate change. Xinjiang, as a typical dryland in China, has received great attention lately for its unique ecological environment. However, comprehensive studies examining vegetation change and its driving factors across Xinjiang are rare. Here, we used the remote sensing datasets (MOD13A2 and TerraClimate) and data of meteorological stations to investigate the trends in the dynamic change in the Normalized Difference Vegetation Index (NDVI) and its response to climate change from 2000 to 2019 across Xinjiang based on the Google Earth platform. We found that the increment rates of growth-season mean and maximum NDVI were 0.0011 per year and 0.0013 per year, respectively, by averaging all of the pixels from the region. The results also showed that, compared with other land use types, cropland had the fastest greening rate, which was mainly distributed among the northern Tianshan Mountains and Southern Junggar Basin and the northern margin of the Tarim Basin. The vegetation browning areas primarily spread over the Ili River Valley where most grasslands were distributed. Moreover, there was a trend of warming and wetting across Xinjiang over the past 20 years; this was determined by analyzing the climate data. Through correlation analysis, we found that the contribution of precipitation to NDVI (R2 = 0.48) was greater than that of temperature to NDVI (R2 = 0.42) throughout Xinjiang. The Standardized Precipitation and Evapotranspiration Index (SPEI) was also computed to better investigate the correlation between climate change and vegetation growth in arid areas. Our results could improve the local management of dryland ecosystems and provide insights into the complex interaction between vegetation and climate change

    Climate change-induced greening on the Tibetan Plateau modulated by mountainous characteristics

    No full text
    International audienceGlobal terrestrial vegetation is greening, particularly in mountain areas, providing strong feedbacks to a series of ecosystem processes. This greening has been primarily attributed to climate change. However, the spatial variability and magnitude of such greening do not synchronize with those of climate change in mountain areas. By integrating two data sets of satellite-derived normalized difference vegetation index (NDVI) values, which are indicators of vegetation greenness, in the period 1982-2015 across the Tibetan Plateau (TP), we test the hypothesis that climate-changeinduced greening is regulated by terrain, baseline climate and soil properties. We find a widespread greening trend over 91% of the TP vegetated areas, with an average greening rate (i.e. increase in NDVI) of 0.011 per decade. The linear mixed-effects model suggests that climate change alone can explain only 26% of the variation in the observed greening. Additionally, 58% of the variability can be explained by the combination of the mountainous characteristics of terrain, baseline climate and soil properties, and 32% of this variability was explained by terrain. Path analysis identified the interconnections of climate change, terrain, baseline climate and soil in determining greening. Our results demonstrate the important role of mountainous effects in greening in response to climate change

    Reconstructing Historical Land Cover Type and Complexity by Synergistic Use of Landsat Multispectral Scanner and CORONA

    No full text
    Survey data describing land cover information such as type and diversity over several decades are scarce. Therefore, our capacity to reconstruct historical land cover using field data and archived remotely sensed data over large areas and long periods of time is somewhat limited. This study explores the relationship between CORONA texture—a surrogate for actual land cover type and complexity—with spectral vegetation indices and texture variables derived from Landsat MSS under the Spectral Variation Hypothesis (SVH) such as to reconstruct historical continuous land cover type and complexity. Image texture of CORONA was calculated using a mean occurrence measure while image textures of Landsat MSS were calculated by occurrence and co-occurrence measures. The relationship between these variables was evaluated using correlation and regression techniques. The reconstruction procedure was undertaken through regression kriging. The results showed that, as expected, texture based on the visible bands and corresponding indices indicated larger correlation with CORONA texture, a surrogate of land cover (correlation >0.65). In terms of prediction, the combination of the first-order mean of band green, second-order measure of tasseled cap brightness, second-order mean of Normalized Visible Index (NVI) and second-order entropy of NIR yielded the best model with respect to Akaike’s Information Criterion (AIC), r-square, and variance inflation factors (VIF). The regression model was then used in regression kriging to map historical continuous land cover. The resultant maps indicated the type and degree of complexity in land cover. Moreover, the proposed methodology minimized the impacts of topographic shadow in the region. The performance of this approach was compared with two conventional classification methods: hard classifiers and continuous classifiers. In contrast to conventional techniques, the technique could clearly quantify land cover complexity and type. Future applications of CORONA datasets such as this one could include: improved quality of CORONA imagery, studies of the CORONA texture measures for extracting ecological parameters (e.g., species distributions), change detection and super resolution mapping using CORONA and Landsat MSS

    Soil erosion modelling: a global review and statistical analysis

    Get PDF
    To gain a better understanding of the global application of soil erosion prediction models, we comprehensively reviewed relevant peer-reviewed research literature on soil-erosion modelling published between 1994 and 2017. We aimed to identify (i) the processes and models most frequently addressed in the literature, (ii) the regions within which models are primarily applied, (iii) the regions which remain unaddressed and why, and (iv) how frequently studies are conducted to validate/evaluate model outcomes relative to measured data. To perform this task, we combined the collective knowledge of 67 soil-erosion scientists from 25 countries. The resulting database, named ‘Global Applications of Soil Erosion Modelling Tracker (GASEMT)’, includes 3030 individual modelling records from 126 countries, encompassing all continents (except Antarctica). Out of the 8471 articles identified as potentially relevant, we reviewed 1697 appropriate articles and systematically evaluated and transferred 42 relevant attributes into the database. This GASEMT database provides comprehensive insights into the state-of-the-art of soil- erosion models and model applications worldwide. This database intends to support the upcoming country-based United Nations global soil-erosion assessment in addition to helping to inform soil erosion research priorities by building a foundation for future targeted, in-depth analyses. GASEMT is an open-source database available to the entire user-community to develop research, rectify errors, and make future expansions.</p
    corecore