542 research outputs found
Effect of Experimental Thyrotoxicosis onto Blood Coagulation: A Proteomics Study
Background: Hyperthyroidism is known to induce a hypercoagulable state. It stimulates plasma levels of procoagulative factors and reduces fibrinolytic activity. So far most of the data have been derived from patients with endogenous hyperthyroidism with a wide variability in the underlying pathogenesis and severity of the disease. Objectives: In this study we experimentally induced thyrotoxicosis in healthy volunteers to explore the effects of thyroxine excess on the plasma proteome. Using a shotgun proteomics approach, the abundance of plasma proteins was monitored before, during and after thyrotoxicosis. Methods: Sixteen healthy male subjects were sampled at baseline, 4 and 8 weeks under 250 µg/day thyroxine p.o., as well as 4 and 8 weeks after stopping the application. Plasma proteins were analyzed after depletion of 6 high-abundance proteins (MARS6) by LC-ESI-MS/MS mass spectrometry. Mass spectrometric raw data were processed using a label-free, intensity-based workflow. Subsequently, the linear dependence between protein abundances and fT4 levels were calculated using a Pearson correlation. Results: All subjects developed biochemical thyrotoxicosis, and this effect was reversed within the first 4 weeks of follow-up. None of the volunteers noticed any subjective symptoms. Levels of 10 proteins involved in the coagulation cascade specifically correlated with fT4, supporting an influence of thyroid hormone levels on blood coagulation even at nonpathological levels. Conclusions: The results suggest that experimental thyrotoxicosis exerts selective and specific thyroxine-induced effects on coagulation markers. Our study design allows assessment of thyroid hormone effects on plasma protein levels without secondary effects of other diseases or therapies
Differences in Mouse Hepatic Thyroid Hormone Transporter Expression with Age and Hyperthyroidism
Background: Clinical features of thyroid dysfunction vary with age, and an oligosymptomatic presentation of hyperthyroidism is frequently observed in the elderly. This suggests age modulation of thyroid hormone (TH) action, which may occur, for example, by alterations in TH production, metabolism and/or TH action in target organs. Objectives: In this paper, we address possible changes in TH transporter expression in liver tissues as a mechanism of age-dependent variation in TH action. Methods: Chronic hyperthyroidism was induced in 4- and 20-month-old C57BL6/NTac male mice (n = 8-10) by intraperitoneal injections of 1 µg/g body weight L-thyroxine (T4) every 48 h over 7 weeks. Control animals were injected with PBS. Total RNA was isolated from liver samples for analysis of the TH transporter and TH-responsive gene expression. TH concentrations were determined in mice sera. Results: Baseline serum free T4 (fT4) concentrations were significantly higher in euthyroid young compared to old mice. T4 treatment increased total T4, fT4 and free triiodothyronine to comparable concentrations in young and old mice. In the euthyroid state, TH transporter expression was significantly higher in old than in young mice, except for Mct8 and Oatp1a1 expression levels. Hyperthyroidism resulted in upregulation of Mct10, Lat1 and Lat2 in liver tissue, while Oatp1a1, Oatp1b2 and Oatp1a4 expression was downregulated. This effect was preserved in old animals. Conclusion: Here, we show age-dependent differences in TH transporter mRNA expression in the euthyroid and hyperthyroid state of mice focusing on the liver as a classical TH target organ
Urine Metabolomics by 1H-NMR Spectroscopy Indicates Associations between Serum 3,5-T2 Concentrations and Intermediary Metabolism in Euthyroid Humans
Context: 3,5-Diiodo-L-thyronine (3,5-T2) is a thyroid hormone metabolite which exhibited versatile effects in rodent models, including the prevention of insulin resistance or hepatic steatosis typically forced by a high-fat diet. With respect to euthyroid humans, we recently observed a putative link between serum 3,5-T2 and glucose but not lipid metabolism. Objective: The aim of the present study was to widely screen the urine metabolome for associations with serum 3,5-T2 concentrations in healthy individuals. Study Design and Methods: Urine metabolites of 715 euthyroid participants of the population-based Study of Health in Pomerania (SHIP-TREND) were analyzed by 1H-NMR spectroscopy. Multinomial logistic and multivariate linear regression models were used to detect associations between urine metabolites and serum 3,5-T2 concentrations. Results: Serum 3,5-T2 concentrations were positively associated with urinary levels of trigonelline, pyroglutamate, acetone and hippurate. In detail, the odds for intermediate or suppressed serum 3,5-T2 concentrations doubled owing to a 1-standard deviation (SD) decrease in urine trigonelline levels, or increased by 29-50% in relation to a 1-SD decrease in urine pyroglutamate, acetone and hippurate levels. Conclusion: Our findings in humans confirmed the metabolic effects of circulating 3,5-T2 on glucose and lipid metabolism, oxidative stress and enhanced drug metabolism as postulated before based on interventional pharmacological studies in rodents. Of note, 3,5-T2 exhibited a unique urinary metabolic profile distinct from previously published results for the classical thyroid hormones
A Thyroid Hormone-Independent Molecular Fingerprint of 3,5-Diiodothyronine Suggests a Strong Relationship with Coffee Metabolism in Humans.
Background: In numerous studies based predominantly on rodent models, administration of 3,5-diiodo-L-thyronine (3,5-T2), a metabolite of the thyroid hormones (TH) thyroxine (T4) and triiodo-L-thyronine (T3), was reported to cause beneficial health effects, including reversal of steatohepatosis and prevention of insulin resistance, in most instances without adverse thyrotoxic side effects. However, the empirical evidence concerning the physiological relevance of endogenously produced 3,5-T2 in humans is comparatively poor. Therefore, to improve the understanding of 3,5-T2-related metabolic processes, we performed a comprehensive metabolomic study relating serum 3,5-T2 concentrations to plasma and urine metabolite levels within a large general population sample. Methods: Serum 3,5-T2 concentrations were determined for 856 participants of the population-based Study of Health in Pomerania-TREND (SHIP-TREND). Plasma and urine metabolome data were generated using mass spectrometry and nuclear magnetic resonance spectroscopy, allowing quantification of 613 and 578 metabolites in plasma and urine, respectively. To detect thyroid function-independent significant 3,5-T2-metabolite associations, linear regression analyses controlling for major confounders, including thyrotropin and free T4, were performed. The same analyses were carried out using a sample of 16 male healthy volunteers treated for 8 weeks with 250 μg/day levothyroxine to induce thyrotoxicosis. Results: The specific molecular fingerprint of 3,5-T2 comprised 15 and 73 significantly associated metabolites in plasma and urine, respectively. Serum 3,5-T2 concentrations were neither associated with classical thyroid function parameters nor altered during experimental thyrotoxicosis. Strikingly, many metabolites related to coffee metabolism, including caffeine and paraxanthine, formed the clearest positively associated molecular signature. Importantly, these associations were replicated in the experimental human thyrotoxicosis model. Conclusion: The molecular fingerprint of 3,5-T2 demonstrates a clear and strong positive association of the serum levels of this TH metabolite with plasma levels of compounds indicating coffee consumption, therefore pointing to the liver as an organ, the metabolism of which is strongly affected by coffee. Furthermore, 3,5-T2 serum concentrations were found not to be directly TH dependent. Considering the beneficial health effects of 3,5-T2 administration observed in animal models and those of coffee consumption demonstrated in large epidemiological studies, one might speculate that coffee-stimulated hepatic 3,5-T2 production or accumulation represents an important molecular link in this connection
COMTVal158Met Genotype Affects Complex Emotion Recognition in Healthy Men and Women
The catechol-o-methyltransferase (COMT) gene has repeatedly been shown to change amygdala activity and amygdala-prefrontal connectivity during face processing. Although the COMT gene appears to induce a negativity bias during the neural processing of faces, it is currently unclear whether a similar negativity bias emerges during the behavioral processing of faces. To address this issue, we investigated differences in complex emotion recognition between participants (n = 181) that had been a priori genotyped for functional polymorphisms of the COMT (Val158Met) and serotonin transporter (5-HTTLPR) gene. We were, thus, able to analyze differences in face processing on basis of participants’ COMT genotype while controlling for participants’ 5-HTTLPR genotype. Variations of participants’ COMT but not 5-HTTLPR genotype accounted for differences in participants’ emotion recognition performance: Met/Met carriers and Met/Val carriers were more accurate in the recognition of negative, but not neutral or positive, expressions than Val/Val carriers. We, therefore, revealed a similar negativity bias during the behavioral processing of faces that has already been demonstrated during the neural processing of faces, indicating that genotype-dependent changes in catecholamine metabolism may affect face processing on the behavioral and neural level
Plasma proteome and metabolome characterization of an experimental human thyrotoxicosis model.
BACKGROUND: Determinations of thyrotropin (TSH) and free thyroxine (FT4) represent the gold standard in evaluation of thyroid function. To screen for novel peripheral biomarkers of thyroid function and to characterize FT4-associated physiological signatures in human plasma we used an untargeted OMICS approach in a thyrotoxicosis model. METHODS: A sample of 16 healthy young men were treated with levothyroxine for 8 weeks and plasma was sampled before the intake was started as well as at two points during treatment and after its completion, respectively. Mass spectrometry-derived metabolite and protein levels were related to FT4 serum concentrations using mixed-effect linear regression models in a robust setting. To compile a molecular signature discriminating between thyrotoxicosis and euthyroidism, a random forest was trained and validated in a two-stage cross-validation procedure. RESULTS: Despite the absence of obvious clinical symptoms, mass spectrometry analyses detected 65 metabolites and 63 proteins exhibiting significant associations with serum FT4. A subset of 15 molecules allowed a robust and good prediction of thyroid hormone function (AUC = 0.86) without prior information on TSH or FT4. Main FT4-associated signatures indicated increased resting energy expenditure, augmented defense against systemic oxidative stress, decreased lipoprotein particle levels, and increased levels of complement system proteins and coagulation factors. Further association findings question the reliability of kidney function assessment under hyperthyroid conditions and suggest a link between hyperthyroidism and cardiovascular diseases via increased dimethylarginine levels. CONCLUSION: Our results emphasize the power of untargeted OMICs approaches to detect novel pathways of thyroid hormone action. Furthermore, beyond TSH and FT4, we demonstrated the potential of such analyses to identify new molecular signatures for diagnosis and treatment of thyroid disorders. This study was registered at the German Clinical Trials Register (DRKS) [DRKS00011275] on the 16th of November 2016
Comparison of genotyping using pooled DNA samples (allelotyping) and individual genotyping using the affymetrix genome-wide human SNP array 6.0
Background: Genome-wide association studies (GWAS) using array-based genotyping technology are widely used to identify genetic loci associated with complex diseases or other phenotypes. The costs of GWAS projects based on individual genotyping are still comparatively high and increase with the size of study populations. Genotyping using pooled DNA samples, as also being referred as to allelotyping approach, offers an alternative at affordable costs. In the
Analysis of Human TAAR8 and Murine Taar8b Mediated Signaling Pathways and Expression Profile
The thyroid hormone derivative 3-iodothyronamine (3-T1AM) exerts metabolic
effects in vivo that contradict known effects of thyroid hormones. 3-T1AM acts
as a trace amine-associated receptor 1 (TAAR1) agonist and activates Gs
signaling in vitro. Interestingly, 3-T1AM-meditated in vivo effects persist in
Taar1 knockout-mice indicating that further targets of 3-T1AM might exist.
Here, we investigated another member of the TAAR family, the only scarcely
studied mouse and human trace-amine-associated receptor 8 (Taar8b, TAAR8). By
RT-qPCR and locked-nucleic-acid (LNA) in situ hybridization, Taar8b expression
in different mouse tissues was analyzed. Functionally, we characterized TAAR8
and Taar8b with regard to cell surface expression and signaling via different
G-protein-mediated pathways. Cell surface expression was verified by ELISA,
and cAMP accumulation was quantified by AlphaScreen for detection of Gs and/or
Gi/o signaling. Activation of G-proteins Gq/11 and G12/13 was analyzed by
reporter gene assays. Expression analyses revealed at most marginal Taar8b
expression and no gender differences for almost all analyzed tissues. In
heart, LNA-in situ hybridization demonstrated the absence of Taar8b
expression. We could not identify 3-T1AM as a ligand for TAAR8 and Taar8b, but
both receptors were characterized by a basal Gi/o signaling activity, a so far
unknown signaling pathway for TAARs
Transcriptional profiling of Helicobacter pylori Fur- and iron-regulated gene expression
Intracellular iron homeostasis is a necessity for almost all living
organisms, since both iron restriction and iron overload can result in
cell death. The ferric uptake regulator protein, Fur, controls iron
homeostasis in most Gram-negative bacteria. In the human gastric pathogen
Helicobacter pylori, Fur is thought to have acquired extra functions to
compensate for the relative paucity of regulatory genes. To identify H.
pylori genes regulated by iron and Fur, we used DNA array-based
transcriptional profiling with RNA isolated from H. pylori 26695 wild-type
and fur mutant cells grown in iron-restricted and iron-replete conditions.
Sixteen genes encoding proteins involved in metal metabolism, nitrogen
metabolism, motility, cell wall synthesis and cofactor synthesis displayed
iron-dependent Fur-repressed expression. Conversely, 16 genes encoding
proteins involved in iron storage, respiration, energy metabolism,
chemotaxis, and oxygen scavenging displayed iron-induced Fur-dependent
expression. Several Fur-regulated genes have been previously shown to be
essential for acid resistance or gastric colonization in animal models,
such as those encoding the hydrogenase and superoxide dismutase enzymes.
Overall, there was a partial overlap between the sets of genes regulated
by Fur and those previously identified as growth-phase, iron or acid
regulated. Regulatory patterns were confirmed for five selected genes
using Northern hybridization. In conclusion, H. pylori Fur is a versatile
regulator involved in many pathways essential for gastric colonization.
These findings further delineate the central role of Fur in regulating the
unique capacity of H. pylori to colonize the human stomach
Correlates of Adverse Outcomes in Abdominally Obese Individuals: Findings from the Five-Year Followup of the Population-Based Study of Health in Pomerania
Background. Abdominal obesity is a major risk factor of
cardiovascular disease (CVD), type 2 diabetes (T2DM), and premature death. However, it has
not been resolved which factors predispose for the development of these adverse obesity-related
outcomes in otherwise healthy individuals with abdominal obesity. Methods. We studied
1,506 abdominal obese individuals (waist-to-height ratio (WHtR) ≥ 0.5) free of CVD or T2DM from the population-based Study of Health in
Pomerania and assessed the incidence of CVD or T2DM after a five-year followup. Logistic
regression models were adjusted for major cardiovascular risk factors and liver, kidney diseases,
and sociodemographic status. Results. During follow-up time, we observed 114 and 136 new T2DM and CVD cases, respectively.
Regression models identified age, waist circumference, serum glucose, and liver disease as predictors of T2DM.
Regarding CVD, only age,
unemployment, and a divorced or widowed marital status were
significantly associated with incident CVD. In this subgroup of obese individuals blood pressure,
serum glucose, or lipids did not influence incidence of T2DM or CVD. Conclusion.
We identified various factors associated with an increased risk of incident T2DM and CVD among
abdominally obese individuals. These findings may improve the detection of high-risk individuals and
help to advance prevention strategies in abdominal obesity
- …