Intracellular iron homeostasis is a necessity for almost all living
organisms, since both iron restriction and iron overload can result in
cell death. The ferric uptake regulator protein, Fur, controls iron
homeostasis in most Gram-negative bacteria. In the human gastric pathogen
Helicobacter pylori, Fur is thought to have acquired extra functions to
compensate for the relative paucity of regulatory genes. To identify H.
pylori genes regulated by iron and Fur, we used DNA array-based
transcriptional profiling with RNA isolated from H. pylori 26695 wild-type
and fur mutant cells grown in iron-restricted and iron-replete conditions.
Sixteen genes encoding proteins involved in metal metabolism, nitrogen
metabolism, motility, cell wall synthesis and cofactor synthesis displayed
iron-dependent Fur-repressed expression. Conversely, 16 genes encoding
proteins involved in iron storage, respiration, energy metabolism,
chemotaxis, and oxygen scavenging displayed iron-induced Fur-dependent
expression. Several Fur-regulated genes have been previously shown to be
essential for acid resistance or gastric colonization in animal models,
such as those encoding the hydrogenase and superoxide dismutase enzymes.
Overall, there was a partial overlap between the sets of genes regulated
by Fur and those previously identified as growth-phase, iron or acid
regulated. Regulatory patterns were confirmed for five selected genes
using Northern hybridization. In conclusion, H. pylori Fur is a versatile
regulator involved in many pathways essential for gastric colonization.
These findings further delineate the central role of Fur in regulating the
unique capacity of H. pylori to colonize the human stomach