23 research outputs found

    Controls on the cadmium isotope composition of modern marine sediments

    Get PDF
    Continental margin sediments have been identified as the dominant sink in the marine budget of cadmium (Cd). The isotopic composition of this important output flux is, however, unknown. Here we present, with measurements on the Argentine continental margin, the first observational constraints on the isotopic composition of Cd in modern marine oxic and sub-oxic sediments. We identify two main removal mechanisms of Cd; in organic material, and by sulfide formation. Surface margin sediments (0–0.5 cm), with dissolved O2 below detection from ∌0.5 cm, are isotopically lighter than overlying oxygenated waters. A mass balance for these surface sediments indicates that Cd is present dominantly as organically-bound particulate Cd. In sub-surface sediments, Cd concentrations increase in the zone of nitrate reduction, and attain similar isotopic compositions as the water that overlies the sediment (i.e. ∌0.35‰ in deep waters). These observations are consistent with a downward diffusive flux of seawater Cd and redox-driven quantitative removal of that Cd during sulfide precipitation. In combination, these two routes of Cd removal lead to burial of isotopically light organic Cd in margin sub-oxic sediments that enables the global isotopic Cd budget to be balanced

    Soluble iron conservation and colloidal iron dynamics in a hydrothermal plume

    Get PDF
    Iron (Fe) limits or co-limits primary productivity and nitrogen fixation in large regions of the world's oceans, and the supply of Fe from hydrothermal vents to the deep ocean is now known to be extensive. However, the mechanisms that control the amount of hydrothermal Fe that is stabilized in the deep ocean, and thus dictate the impact of hydrothermal Fe sources on surface ocean biogeochemistry, are unclear. To learn more, we have examined the dispersion of total dissolvable Fe (TDFe), dissolved Fe (dFe) and soluble Fe (sFe) in the buoyant and non-buoyant hydrothermal plume above the Beebe vent field, Caribbean Sea. We have also characterized plume particles using electron microscopy and synchrotron based spectromicroscopy. We show that the majority of dFe in the Beebe hydrothermal plume was present as colloidal Fe (cFe = dFe − sFe). During ascent of the buoyant plume, a significant fraction of particulate Fe (pFe = TDFe − dFe) was lost to settling and exchange with colloids. Conversely, the opposite was observed in the non-buoyant plume, where pFe concentrations increased during non-buoyant plume dilution, cFe concentrations decreased apparently due to colloid aggregation. Elemental mapping of carbon, oxygen and iron in plume particles reveals their close association and indicates that exchanges of Fe between colloids and particles must include transformations of organic carbon and Fe oxyhydroxide minerals. Notably, sFe is largely conserved during plume dilution, and this is likely to be due to stabilization by organic ligands, in contrast to the more dynamic exchanges between pFe and cFe. This study highlights that the size of the sFe stabilizing ligand pool, and the rate of iron-rich colloid aggregation will control the amount and physico-chemical composition of dFe supplied to the ocean interior from hydrothermal systems. Both the ligand pool, and the rate of cFe aggregation in hydrothermal plumes remain uncertain and determining these are important intermediate goals to more accurately assess the impact of hydrothermalism on the ocean's carbon cycle. This article is part of a special issue entitled: “Cycles of trace elements and isotopes in the ocean – GEOTRACES and beyond” - edited by Tim M. Conway, Tristan Horner, Yves Plancherel, and Aridane G. González

    Long-term organic carbon preservation enhanced by iron and manganese.

    Get PDF
    The balance between degradation and preservation of sedimentary organic carbon (OC) is important for global carbon and oxygen cycles1. The relative importance of different mechanisms and environmental conditions contributing to marine sedimentary OC preservation, however, remains unclear2-8. Simple organic molecules can be geopolymerized into recalcitrant forms by means of the Maillard reaction5, although reaction kinetics at marine sedimentary temperatures are thought to be slow9,10. More recent work in terrestrial systems suggests that the reaction can be catalysed by manganese minerals11-13, but the potential for the promotion of geopolymerized OC formation at marine sedimentary temperatures is uncertain. Here we present incubation experiments and find that iron and manganese ions and minerals abiotically catalyse the Maillard reaction by up to two orders of magnitude at temperatures relevant to continental margins where most preservation occurs4. Furthermore, the chemical signature of the reaction products closely resembles dissolved and total OC found in continental margin sediments globally. With the aid of a pore-water model14, we estimate that iron- and manganese-catalysed transformation of simple organic molecules into complex macromolecules might generate on the order of approximately 4.1 Tg C yr-1 for preservation in marine sediments. In the context of perhaps only about 63 Tg C yr-1 variation in sedimentary organic preservation over the past 300 million years6, we propose that variable iron and manganese inputs to the ocean could exert a substantial but hitherto unexplored impact on global OC preservation over geological time

    Stability of dissolved and soluble Fe(II) in shelf sediment pore waters and release to an oxic water column

    Get PDF
    Shelf sediments underlying temperate and oxic waters of the Celtic Sea (NW European Shelf) were found to have shallow oxygen penetrations depths from late spring to late summer (2.2–5.8 mm below seafloor) with the shallowest during/after the spring-bloom (mid-April to mid-May) when the organic carbon content was highest. Sediment porewater dissolved iron (dFe, 85%) consisted of Fe(II) and gradually increased from 0.4 to 15 ÎŒM at the sediment surface to ~100–170 ”M at about 6 cm depth. During the late spring this Fe(II) was found to be mainly present as soluble Fe(II) (>85% sFe, 7 h. Iron(II) oxidation experiments in core top and bottom waters also showed removal from solution but at rates up to 5-times slower than predicted from theoretical reaction kinetics. These data imply the presence of ligands capable of complexing Fe(II) and supressing oxidation. The lower oxidation rate allows more time for the diffusion of Fe(II) from the sediments into the overlying water column. Modelling indicates significant diffusive fluxes of Fe(II) (on the order of 23–31 ”mol m−2 day−1) are possible during late spring when oxygen penetration depths are shallow, and pore water Fe(II) concentrations are highest. In the water column this stabilised Fe(II) will gradually be oxidised and become part of the dFe(III) pool. Thus oxic continental shelves can supply dFe to the water column, which is enhanced during a small period of the year after phytoplankton bloom events when organic matter is transferred to the seafloor. This input is based on conservative assumptions for solute exchange (diffusion-reaction), whereas (bio)physical advection and resuspension events are likely to accelerate these solute exchanges in shelf-seas

    Coastal ocean and shelf-sea biogeochemical cycling of trace elements and isotopes: lessons learned from GEOTRACES

    Get PDF
    Continental shelves and shelf seas play a central role in the global carbon cycle. However, their importance with respect to trace element and isotope (TEI) inputs to ocean basins is less well understood. Here, we present major findings on shelf TEI biogeochemistry from the GEOTRACES programme as well as a proof of concept for a new method to estimate shelf TEI fluxes. The case studies focus on advances in our understanding of TEI cycling in the Arctic, transformations within a major river estuary (Amazon), shelf sediment micronutrient fluxes and basin-scale estimates of submarine groundwater discharge. The proposed shelf flux tracer is 228-radium (T1/2 = 5.75 yr), which is continuously supplied to the shelf from coastal aquifers, sediment porewater exchange and rivers. Model-derived shelf 228Ra fluxes are combined with TEI/ 228Ra ratios to quantify ocean TEI fluxes from the western North Atlantic margin. The results from this new approach agree well with previous estimates for shelf Co, Fe, Mn and Zn inputs and exceed published estimates of atmospheric deposition by factors of approximately 3–23. Lastly, recommendations are made for additional GEOTRACES process studies and coastal margin-focused section cruises that will help refine the model and provide better insight on the mechanisms driving shelf-derived TEI fluxes to the ocean. This article is part of the themed issue ‘Biological and climatic impacts of ocean trace element chemistry’

    An approach for the identification of exemplar sites for scaling up targeted field observations of benthic biogeochemistry in heterogeneous environments

    Get PDF
    Continental shelf sediments are globally important for biogeochemical activity. Quantification of shelf-scale stocks and fluxes of carbon and nutrients requires the extrapolation of observations made at limited points in space and time. The procedure for selecting exemplar sites to form the basis of this up-scaling is discussed in relation to a UK-funded research programme investigating biogeochemistry in shelf seas. A three-step selection process is proposed in which (1) a target area representative of UK shelf sediment heterogeneity is selected, (2) the target area is assessed for spatial heterogeneity in sediment and habitat type, bed and water column structure and hydrodynamic forcing, and (3) study sites are selected within this target area encompassing the range of spatial heterogeneity required to address key scientific questions regarding shelf scale biogeochemistry, and minimise confounding variables. This led to the selection of four sites within the Celtic Sea that are significantly different in terms of their sediment, bed structure, and macrofaunal, meiofaunal and microbial community structures and diversity, but have minimal variations in water depth, tidal and wave magnitudes and directions, temperature and salinity. They form the basis of a research cruise programme of observation, sampling and experimentation encompassing the spring bloom cycle. Typical variation in key biogeochemical, sediment, biological and hydrodynamic parameters over a pre to post bloom period are presented, with a discussion of anthropogenic influences in the region. This methodology ensures the best likelihood of site-specific work being useful for up-scaling activities, increasing our understanding of benthic biogeochemistry at the UK-shelf scale

    Tracing the Agulhas leakage with lead isotopes

    Get PDF
    The transport of warm and salty waters from the Indian Ocean to the South Atlantic by the Agulhas Current constitutes a key return route of the meridional overturning circulation. Despite the importance of the Agulhas Leakage on interoceanic exchange, its role on biogeochemical cycles is poorly documented. Here we present the first lead (Pb) concentration and isotope data for surface seawater collected during the GEOTRACES cruise D357 in the Agulhas current system. Lead in surface waters of the Cape Basin is described by three distinct end‐members: the South African coast, open South Atlantic seawater, and Indian Ocean seawater. The latter stands out in its Pb isotopic composition and can be tracked within two distinct Agulhas rings. High Pb concentrations in the Agulhas rings further corroborate an Indian Ocean provenance of waters and suggest that the Agulhas Leakage represents a major conduit not only for heat but also for trace metals

    RaDeCC reader: Fast, accurate and automated data processing for Radium Delayed Coincidence Counting systems

    No full text
    A Python program is presented to expedite the process of correcting raw data and propagating the related uncertainties from Radium Delayed Coincidence Counting (RaDeCC) instruments. The performance of the program was validated against an established method with real data. Excellent agreement between determinations of excess radium-223, actinium-227, excess radium-224, thorium-228 and radium-226 was achieved, with minor discrepancies in the results attributed to logical improvements in our implementation. The RaDeCC Reader program is able to process one thousand data files in only a few minutes, and thereby offer distinct advantages in the processing speed combined with reliable accuracy of data processing implementations

    Organic Carbon Burial With Reactive Iron Across Global Environments

    Get PDF
    Preservation of organic carbon (OC) in marine and terrestrial deposits is enhanced by bonding with reactive iron (FeR). Association of OC with FeR (OC-FeR) provides physical protection and hinders microbiological degradation. Roughly 20% of all OC stored in unconsolidated marine sediments and 40% of all OC present in Quaternary terrestrial deposits is preserved as OC-FeR, but this value varies from 10% to 80% across global depositional environments. Here, we provide a new assessment of global OC-FeR burial rates in both marine and terrestrial environments, using published estimates of OC associated with FeR, carbon burial, and probabilistic modeling. We estimate the marine OC-FeR sink between 31 and 70 Mt C yr−1 (average 52 Mt C yr−1), and the terrestrial OC-FeR sink at between 146 and 917 Mt C yr−1 (average 446 Mt C yr−1). In marine environments, continental shelves (average 17 Mt C yr−1) and deltaic/estuarine environments (average 11 Mg C yr−1) are the primary settings of OC-FeR burial. On land, croplands (279 Mt C yr−1) and grasslands (121 Mt C yr−1) dominate the OC-FeR burial budget. Changes in the Earth system through geological time impact the OC-FeR pools, particularly in marine settings. For example, periods of intense explosive volcanism may lead to increased net OC-FeR burial in marine sediments. Our work highlights the importance of OC-FeR in marine carbon burial and demonstrates how OC-FeR burial rates may be an order of magnitude greater in terrestrial environments, but here OC-FeR stocks are most sensitive to the anthropogenic impacts of climatic change
    corecore