23 research outputs found

    Deer reduce habitat quality for a woodland songbird: evidence from settlement patterns, demographic parameters, and body condition.

    Get PDF
    Understanding avian responses to ungulate-induced habitat modification is important because deer populations are increasing across much of temperate Europe and North America. Our experimental study examined whether habitat quality for Blackcaps (Sylvia atricapilla) in young woodland in eastern England was affected by deer, by comparing Blackcap behavior, abundance, and condition between paired plots (half of each pair protected from deer). The vegetation in each pair of plots was the same age. The Blackcap is an ideal model species for testing effects of deer on avian habitat quality because it is dependent on dense understory vegetation and is abundant throughout much of Europe. We compared timing of settlement, abundance, age structure (second-year vs. after-second-year), and phenotypic quality (measured as a body condition index, body mass divided by tarsus length) between experimental and control plots. We used point counts to examine Blackcap distribution, and standardized mist netting to collect demographic and biometric data. Incidence of singing Blackcaps was higher in nonbrowsed than in browsed plots, and singing males were recorded in nonbrowsed plots earlier in the season, indicating earlier and preferential territory establishment. Most Blackcaps, both males and females, were captured in vegetation prior to canopy closure (2–4 years of regrowth). Body condition was superior for male Blackcaps captured in nonbrowsed plots; for second-year males this was most marked in vegetation prior to canopy closure. We conclude that deer browsing in young woodland can alter habitat quality for understory-dependent species, with potential consequences for individual fitness and population productivity beyond the more obvious effects on population density

    COVID-19 symptoms at hospital admission vary with age and sex: results from the ISARIC prospective multinational observational study

    Get PDF
    Background: The ISARIC prospective multinational observational study is the largest cohort of hospitalized patients with COVID-19. We present relationships of age, sex, and nationality to presenting symptoms. Methods: International, prospective observational study of 60 109 hospitalized symptomatic patients with laboratory-confirmed COVID-19 recruited from 43 countries between 30 January and 3 August 2020. Logistic regression was performed to evaluate relationships of age and sex to published COVID-19 case definitions and the most commonly reported symptoms. Results: ‘Typical’ symptoms of fever (69%), cough (68%) and shortness of breath (66%) were the most commonly reported. 92% of patients experienced at least one of these. Prevalence of typical symptoms was greatest in 30- to 60-year-olds (respectively 80, 79, 69%; at least one 95%). They were reported less frequently in children (≤ 18 years: 69, 48, 23; 85%), older adults (≥ 70 years: 61, 62, 65; 90%), and women (66, 66, 64; 90%; vs. men 71, 70, 67; 93%, each P < 0.001). The most common atypical presentations under 60 years of age were nausea and vomiting and abdominal pain, and over 60 years was confusion. Regression models showed significant differences in symptoms with sex, age and country. Interpretation: This international collaboration has allowed us to report reliable symptom data from the largest cohort of patients admitted to hospital with COVID-19. Adults over 60 and children admitted to hospital with COVID-19 are less likely to present with typical symptoms. Nausea and vomiting are common atypical presentations under 30 years. Confusion is a frequent atypical presentation of COVID-19 in adults over 60 years. Women are less likely to experience typical symptoms than men

    Breeding and post-breeding responses of woodland birds to modification of habitat structure by deer

    No full text
    Birds in woodland can be affected by increasing deer populations through changes to vegetation structure and potential impacts on foraging resources; these effects need to be better understood. Effects of deer browsing are reported from a replicated split-plot exclusion experiment in English coppiced woodland. All stages of growth were examined up to eight years after felling. We used standardised mist-netting (totaling 1920 h) to sample birds in breeding and post-breeding periods. Deer browsing strongly altered vegetation structure by reducing canopy cover and shrub layer foliage density. However deer did not affect invertebrate density per unit of foliage, providing no evidence of an ungulate-mediated plant chemical response affecting forage quality for invertebrate herbivores. At avian guild level, significantly more ground and understorey foraging birds were captured where deer were excluded, and negative responses to browsing were more marked for pooled migrants than pooled residents. At the species level, especially pronounced negative effects were evident for dunnock (Prunella modularis) and garden warbler (Sylvia borin); approximately five times more dunnocks were captured in deer exclosures than in browsed vegetation. We also detected negative responses to browsing by nightingale (Luscinia megarhynchos) and long-tailed tit (Aegithalos caudatus). No significant positive responses to browsing were detected. For some species the use of young re-growth increased post breeding relative to the breeding period, including a marked shift by pooled residents that involved a disproportionate number of juveniles. Previous studies in North America have shown that, through vegetation modification, ungulate activity can alter woodland bird assemblages; as far as we are aware this is the first experimental demonstration of effects in Europe, and at low to moderate browsing intensity typical of the wider landscape scale

    Rapid climate driven shifts in wintering distributions of three common waterbird species

    No full text
    Climate change is predicted to cause changes in species distributions and several studies report margin range shifts in some species. However, the reported changes rarely concern a species' entire distribution and are not always linked to climate change

    Habitat use by nightingales in a scrub-woodland mosaic at the edge of the range

    No full text
    Capsule Nightingales Luscinia megarhynchos with song territories in scrub vegetation also used adjacent woodland. Aims To examine spatial use by Nightingales of vegetation mosaics and associated selection of vegetation height classes. Methods We examined habitat selection by male Nightingales through territory mapping and radiotracking within a mosaic of dry scrub and woodland adjacent to water-filled gravel pits in eastern England. Results Fourteen song territories were exclusively in scrub, 2 were exclusively in woodland, and 13 comprised both habitat types. Densities were greatest in scrub vegetation of 3–5 m height. Best-supported models for territory density indicated the importance of considering optimal vegetation height within management prescriptions. Despite song territories being in scrub, kernel home-ranges of all radiotracked Nightingales contained areas of mature trees. Birds also spent more time there than expected based on availability of woodland within kernels. Conclusions Habitat quality has been implicated in the decline of Nightingales in lowland woodland in Britain (and an associated increase in the proportion found in scrub). Our results indicate that woodland habitat characteristics provide resources for Nightingales with song territories located in dry scrub and may be a factor in territory establishment, and are therefore relevant for conservation practitioners at such sites

    Rapid climate driven shifts in wintering distributions of three common waterbird species

    No full text
    Climate change is predicted to cause changes in species distributions and several studies report margin range shifts in some species. However, the reported changes rarely concern a species' entire distribution and are not always linked to climate change. Here, we demonstrate strong north-eastwards shifts in the centres of gravity of the entire wintering range of three common waterbird species along the North-West Europe flyway during the past three decades. These shifts correlate with an increase of 3.8 degrees C in early winter temperature in the north-eastern part of the wintering areas, where bird abundance increased exponentially, corresponding with decreases in abundance at the south-western margin of the wintering ranges. This confirms the need to re-evaluate conservation site safeguard networks and associated biodiversity monitoring along the flyway, as new important wintering areas are established further north and east, and highlights the general urgency of conservation planning in a changing world. Range shifts in wintering waterbirds may also affect hunting pressure, which may alter bag sizes and lead to population-level consequences

    Seeking explanations for recent changes in abundance of wintering Eurasian Wigeon (Anas penelope) in northwest Europe

    No full text
    We analysed annual changes in abundance of Eurasian Wigeon (Anas penelope) derived from mid-winter International Waterbird Census data throughout its northwest European flyway since 1988 using log-linear Poisson regression modelling. Increases in abundance in the north and east of the wintering range (Norway, Sweden, Denmark, Germany, Switzerland), stable numbers in the central range (Belgium, Netherlands, UK and France) and declining abundance in the west and south of the wintering range (Spain and Ireland) suggest a shift in wintering distribution consistent with milder winters throughout the range. However, because over 75% of the population of over 1 million individuals winters in Belgium, the Netherlands, UK and France, there was no evidence for a major movement in the centre of gravity of the wintering distribution. Between-winter changes in overall flyway abundance were highly significantly positively correlated (P = 0.003) with reproductive success measured by age ratios in Danish hunter wing surveys and less strongly and inversely correlated (P = 0.05) with mean January temperatures in the centre of the wintering range, suggesting that winter severity may also contribute to influence survival. However, adding winter severity to a model predicting population size based on annual reproductive success alone did not contribute to more effectively modelling the observed changes in population size. Patterns in annual reproductive success seem therefore to largely explain the recent dynamics in population size of northwest European Wigeon. Summer NAO significantly and positively explained 27% of variance in annual breeding success. Other local factors such as eutrophication of breeding sites and changes in predation pressure undoubtedly contribute to changes in the annual production of young and differences in hunting pressure as well as winter severity affect annual survival rates. However, it seems likely that the observed flyway population trend since 1988 has been mostly influenced by climate effects on the breeding grounds affecting reproductive success and marginally on the winter quarters affecting survival. We urge improved demographic monitoring of the population to better assess annual survival and reproductive success. We also recommend development of an adaptive management framework to remove uncertainties in our knowledge of Wigeon population dynamics as information is forthcoming to better inform management, especially to attempt to harmonise the harvest with annual changes in demography to ensure sustainable exploitation of this important quarry species now and in the future

    Characteristics and outcomes of an international cohort of 600 000 hospitalized patients with COVID-19

    No full text
    Background: We describe demographic features, treatments and clinical outcomes in the International Severe Acute Respiratory and emerging Infection Consortium (ISARIC) COVID-19 cohort, one of the world’s largest international, standardized data sets concerning hospitalized patients. Methods: The data set analysed includes COVID-19 patients hospitalized between January 2020 and January 2022 in 52 countries. We investigated how symptoms on admission, co-morbidities, risk factors and treatments varied by age, sex and other characteristics. We used Cox regression models to investigate associations between demographics, symptoms, co-morbidities and other factors with risk of death, admission to an intensive care unit (ICU) and invasive mechanical ventilation (IMV). Results: Data were available for 689 572 patients with laboratory-confirmed (91.1%) or clinically diagnosed (8.9%) SARS-CoV-2 infection from 52 countries. Age [adjusted hazard ratio per 10 years 1.49 (95% CI 1.48, 1.49)] and male sex [1.23 (1.21, 1.24)] were associated with a higher risk of death. Rates of admission to an ICU and use of IMV increased with age up to age 60 years then dropped. Symptoms, co-morbidities and treatments varied by age and had varied associations with clinical outcomes. The case-fatality ratio varied by country partly due to differences in the clinical characteristics of recruited patients and was on average 21.5%. Conclusions: Age was the strongest determinant of risk of death, with a ~30-fold difference between the oldest and youngest groups; each of the co-morbidities included was associated with up to an almost 2-fold increase in risk. Smoking and obesity were also associated with a higher risk of death. The size of our international database and the standardized data collection method make this study a comprehensive international description of COVID-19 clinical features. Our findings may inform strategies that involve prioritization of patients hospitalized with COVID-19 who have a higher risk of death
    corecore