17 research outputs found

    Ambient carbon monoxide and daily mortality: a global time-series study in 337 cities

    Get PDF
    BACKGROUND: Epidemiological evidence on short-term association between ambient carbon monoxide (CO) and mortality is inconclusive and limited to single cities, regions, or countries. Generalisation of results from previous studies is hindered by potential publication bias and different modelling approaches. We therefore assessed the association between short-term exposure to ambient CO and daily mortality in a multicity, multicountry setting. METHODS: We collected daily data on air pollution, meteorology, and total mortality from 337 cities in 18 countries or regions, covering various periods from 1979 to 2016. All included cities had at least 2 years of both CO and mortality data. We estimated city-specific associations using confounder-adjusted generalised additive models with a quasi-Poisson distribution, and then pooled the estimates, accounting for their statistical uncertainty, using a random-effects multilevel meta-analytical model. We also assessed the overall shape of the exposure-response curve and evaluated the possibility of a threshold below which health is not affected. FINDINGS: Overall, a 1 mg/m3 increase in the average CO concentration of the previous day was associated with a 0·91% (95% CI 0·32-1·50) increase in daily total mortality. The pooled exposure-response curve showed a continuously elevated mortality risk with increasing CO concentrations, suggesting no threshold. The exposure-response curve was steeper at daily CO levels lower than 1 mg/m3, indicating greater risk of mortality per increment in CO exposure, and persisted at daily concentrations as low as 0·6 mg/m3 or less. The association remained similar after adjustment for ozone but was attenuated after adjustment for particulate matter or sulphur dioxide, or even reduced to null after adjustment for nitrogen dioxide. INTERPRETATION: This international study is by far the largest epidemiological investigation on short-term CO-related mortality. We found significant associations between ambient CO and daily mortality, even at levels well below current air quality guidelines. Further studies are warranted to disentangle its independent effect from other traffic-related pollutants. FUNDING: EU Horizon 2020, UK Medical Research Council, and Natural Environment Research Council

    Fluctuating temperature modifies heat-mortality association around the globe

    Get PDF
    Studies have investigated the effects of heat and temperature variability (TV) on mortality. However, few assessed whether TV modifies the heat-mortality association. Data on daily temperature and mortality in the warm season were collected from 717 locations across 36 countries. TV was calculated as the standard deviation of the average of the same and previous days’ minimum and maximum temperatures. We used location-specific quasi-Poisson regression models with an interaction term between the cross-basis term for mean temperature and quartiles of TV to obtain heat-mortality associations under each quartile of TV, and then pooled estimates at the country, regional, and global levels. Results show the increased risk in heat-related mortality with increments in TV, accounting for 0.70% (95% confidence interval [CI]: −0.33 to 1.69), 1.34% (95% CI: −0.14 to 2.73), 1.99% (95% CI: 0.29–3.57), and 2.73% (95% CI: 0.76–4.50) of total deaths for Q1–Q4 (first quartile–fourth quartile) of TV. The modification effects of TV varied geographically. Central Europe had the highest attributable fractions (AFs), corresponding to 7.68% (95% CI: 5.25–9.89) of total deaths for Q4 of TV, while the lowest AFs were observed in North America, with the values for Q4 of 1.74% (95% CI: −0.09 to 3.39). TV had a significant modification effect on the heat-mortality association, causing a higher heat-related mortality burden with increments of TV. Implementing targeted strategies against heat exposure and fluctuant temperatures simultaneously would benefit public health. © 2022 The Author(s)Funding text 1: This study was supported by the Australian Research Council (DP210102076) and the Australian National Health and Medical Research Council (APP2000581). Y.W and B.W. were supported by the China Scholarship Council (nos. 202006010044 and 202006010043); S.L. was supported by an Emerging Leader Fellowship of the Australian National Health and Medical Research Council (no. APP2009866); Y.G. was supported by Career Development Fellowship (no. APP1163693) and Leader Fellowship (no. APP2008813) of the Australian National Health and Medical Research Council; J.K. and A.U. were supported by the Czech Science Foundation (project no. 20–28560S); N.S. was supported by the National Institute of Environmental Health Sciences-funded HERCULES Center (no. P30ES019776); Y.H. was supported by the Environment Research and Technology Development Fund (JPMEERF15S11412) of the Environmental Restoration and Conservation Agency; M.d.S.Z.S.C. and P.H.N.S. were supported by the São Paulo Research Foundation (FAPESP); H.O. and E.I. were supported by the Estonian Ministry of Education and Research (IUT34–17); J.M. was supported by a fellowship of Fundação para a Ciência e a Tecnlogia (SFRH/BPD/115112/2016); A.G. and F.S. were supported by the Medical Research Council UK (grant ID MR/R013349/1), the Natural Environment Research Council UK (grant ID NE/R009384/1), and the EU's Horizon 2020 project, Exhaustion (grant ID 820655); A.S. and F.d.D. were supported by the EU's Horizon 2020 project, Exhaustion (grant ID 820655); V.H. was supported by the Spanish Ministry of Economy, Industry and Competitiveness (grant ID PCIN-2017–046); and A.T. by MCIN/AEI/10.13039/501100011033 (grant CEX2018-000794-S). Statistics South Africa kindly provided the mortality data, but had no other role in the study. Y.G. A.G. M.H. and B. Armstrong set up the collaborative network. Y.G. S.L. and Y.W. designed the study. Y.G. S.L. and A.G. developed the statistical methods. Y.W. B.W. S.L. and Y.G. took the lead in drafting the manuscript and interpreting the results. Y.W. B.W. Y.G. A.G. S.T. A.O. A.U. A.S. A.E. A.M.V.-C. A. Zanobetti, A.A. A. Zeka, A.T. B. Alahmad, B. Armstrong, B.F. C.Í. C. Ameling, C.D.l.C.V. C. Åström, D.H. D.V.D. D.R. E.I. E.L. F.M. F.A. F.D. F.S. G.C.-E. H. Kan, H.O. H. Kim, I.-H.H. J.K. J.M. J.S. K.K. M.H.-D. M.S.R. M.H. M.P. M.d.S.Z.S.C. N.S. P.M. P.G. P.H.N.S. R.A. S.O. T.N.D. V.C. V.H. W.L. X.S. Y.H. M.L.B. and S.L. provided the data and contributed to the interpretation of the results and the submitted version of the manuscript. Y.G. S.L. and Y.W. accessed and verified the data. All of the authors had full access to all of the data in the study and had final responsibility for the decision to submit for publication. The authors declare no competing interests.; Funding text 2: This study was supported by the Australian Research Council ( DP210102076 ) and the Australian National Health and Medical Research Council ( APP2000581 ). Y.W and B.W. were supported by the China Scholarship Council (nos. 202006010044 and 202006010043 ); S.L. was supported by an Emerging Leader Fellowship of the Australian National Health and Medical Research Council (no. APP2009866 ); Y.G. was supported by Career Development Fellowship (no. APP1163693) and Leader Fellowship (no. APP2008813) of the Australian National Health and Medical Research Council ; J.K. and A.U. were supported by the Czech Science Foundation (project no. 20–28560S ); N.S. was supported by the National Institute of Environmental Health Sciences -funded HERCULES Center (no. P30ES019776 ); Y.H. was supported by the Environment Research and Technology Development Fund ( JPMEERF15S11412 ) of the Environmental Restoration and Conservation Agency; M.d.S.Z.S.C. and P.H.N.S. were supported by the São Paulo Research Foundation (FAPESP); H.O. and E.I. were supported by the Estonian Ministry of Education and Research ( IUT34–17 ); J.M. was supported by a fellowship of Fundação para a Ciência e a Tecnlogia ( SFRH/BPD/115112/2016 ); A.G. and F.S. were supported by the Medical Research Council UK (grant ID MR/R013349/1 ), the Natural Environment Research Council UK (grant ID NE/R009384/1 ), and the EU’s Horizon 2020 project, Exhaustion (grant ID 820655 ); A.S. and F.d.D. were supported by the EU’s Horizon 2020 project, Exhaustion (grant ID 820655 ); V.H. was supported by the Spanish Ministry of Economy, Industry and Competitiveness (grant ID PCIN-2017–046 ); and A.T. by MCIN/AEI/10.13039/501100011033 (grant CEX2018-000794-S). Statistics South Africa kindly provided the mortality data, but had no other role in the study

    Comparison of weather station and climate reanalysis data for modelling temperature-related mortality

    Get PDF
    Epidemiological analyses of health risks associated with non-optimal temperature are traditionally based on ground observations from weather stations that offer limited spatial and temporal coverage. Climate reanalysis represents an alternative option that provide complete spatio-temporal exposure coverage, and yet are to be systematically explored for their suitability in assessing temperature-related health risks at a global scale. Here we provide the first comprehensive analysis over multiple regions to assess the suitability of the most recent generation of reanalysis datasets for health impact assessments and evaluate their comparative performance against traditional station-based data. Our findings show that reanalysis temperature from the last ERA5 products generally compare well to station observations, with similar non-optimal temperature-related risk estimates. However, the analysis offers some indication of lower performance in tropical regions, with a likely underestimation of heat-related excess mortality. Reanalysis data represent a valid alternative source of exposure variables in epidemiological analyses of temperature-related risk. © 2022, The Author(s).The original version of this Article contained an error in Affiliation 25, which was incorrectly given as ‘Faculty of Medicine ArqFuturo INSPER, University of São Paulo, São Paulo, Brazil’. The correct affiliation is listed below. Faculty of Medicine, University of São Paulo, São Paulo, Brazil The original Article has been corrected. © The Author(s) 2022.The study was primarily supported by Grants from the European Commission’s Joint Research Centre Seville (Research Contract ID: JRC/SVQ/2020/MVP/1654), Medical Research Council-UK (Grant ID: MR/R013349/1), Natural Environment Research Council UK (Grant ID: NE/R009384/1), European Union’s Horizon 2020 Project Exhaustion (Grant ID: 820655). The following individual Grants also supported this work: J.K and A.U were supported by the Czech Science Foundation, project 20-28560S. A.T was supported by MCIN/AEI/10.13039/501100011033, Grant CEX2018-000794-S. V.H was supported by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant agreement No 101032087. This work was generated using Copernicus Climate Change Service (C3S) information [1985–2019]

    Global, regional, and national burden of mortality associated with short-term temperature variability from 2000-19: a three-stage modelling study

    Get PDF
    BACKGROUND: Increased mortality risk is associated with short-term temperature variability. However, to our knowledge, there has been no comprehensive assessment of the temperature variability-related mortality burden worldwide. In this study, using data from the MCC Collaborative Research Network, we first explored the association between temperature variability and mortality across 43 countries or regions. Then, to provide a more comprehensive picture of the global burden of mortality associated with temperature variability, global gridded temperature data with a resolution of 0.5 degrees x 0.5 degrees were used to assess the temperature variability-related mortality burden at the global, regional, and national levels. Furthermore, temporal trends in temperature variability-related mortality burden were also explored from 2000-19. METHODS: In this modelling study, we applied a three-stage meta-analytical approach to assess the global temperature variability-related mortality burden at a spatial resolution of 0.5 degrees x 0.5 degrees from 2000-19. Temperature variability was calculated as the SD of the average of the same and previous days' minimum and maximum temperatures. We first obtained location-specific temperature variability related-mortality associations based on a daily time series of 750 locations from the Multi-country Multi-city Collaborative Research Network. We subsequently constructed a multivariable meta-regression model with five predictors to estimate grid-specific temperature variability related-mortality associations across the globe. Finally, percentage excess in mortality and excess mortality rate were calculated to quantify the temperature variability-related mortality burden and to further explore its temporal trend over two decades. FINDINGS: An increasing trend in temperature variability was identified at the global level from 2000 to 2019. Globally, 1 753 392 deaths (95% CI 1 159 901-2 357 718) were associated with temperature variability per year, accounting for 3.4% (2.2-4.6) of all deaths. Most of Asia, Australia, and New Zealand were observed to have a higher percentage excess in mortality than the global mean. Globally, the percentage excess in mortality increased by about 4.6% (3.7-5.3) per decade. The largest increase occurred in Australia and New Zealand (7.3%, 95% CI 4.3-10.4), followed by Europe (4.4%, 2.2-5.6) and Africa (3.3, 1.9-4.6). INTERPRETATION: Globally, a substantial mortality burden was associated with temperature variability, showing geographical heterogeneity and a slightly increasing temporal trend. Our findings could assist in raising public awareness and improving the understanding of the health impacts of temperature variability. FUNDING: Australian Research Council, Australian National Health & Medical Research Council
    corecore