1,163 research outputs found

    The CFEPS Kuiper Belt Survey: Strategy and Pre-survey Results

    Full text link
    We present the data acquisition strategy and characterization procedures for the Canada-France Ecliptic Plane Survey (CFEPS), a sub-component of the Canada-France-Hawaii Telescope Legacy Survey. The survey began in early 2003 and as of summer 2005 has covered 430 square degrees of sky within a few degrees of the ecliptic. Moving objects beyond the orbit of Uranus are detected to a magnitude limit of mRm_R=23 -- 24 (depending on the image quality). To track as large a sample as possible and avoid introducing followup bias, we have developed a multi-epoch observing strategy that is spread over several years. We present the evolution of the uncertainties in ephemeris position and orbital elements as the objects progress through the epochs. We then present a small 10-object sample that was tracked in this manner as part of a preliminary survey starting a year before the main CFEPS project. We describe the CFEPS survey simulator, to be released in 2006, which allows theoretical models of the Kuiper Belt to be compared with the survey discoveries since CFEPS has a well-documented pointing history with characterized detection efficiencies as a function of magnitude and rate of motion on the sky. Using the pre-survey objects we illustrate the usage of the simulator in modeling the classical Kuiper Belt.Comment: to be submitted to Icaru

    Age-Independent Increases in Male Salivary Testosterone During Horticultural Activity Among Tsimane Forager-Farmers

    Get PDF
    Testosterone plays an important role in mediating male reproductive trade-offs in many vertebrate species, augmenting muscle and influencing behavior necessary for male-male competition and mating-effort. Among humans, testosterone may also play a key role in facilitating male provisioning of offspring as muscular and neuromuscular performance are deeply influenced by acute changes in testosterone. This study examines acute changes in salivary testosterone among 63 Tsimane men ranging in age from 16–80 (mean 38.2) years during one-hour bouts of treechopping while clearing horticultural plots. The Tsimane forager-horticulturalists living in the Bolivian Amazon experience high energy expenditure associated with food production, have high levels of parasites and pathogens, and display significantly lower baseline salivary testosterone than age-matched US males. Mixed-effects models controlling for BMI and time of specimen collection reveal increased salivary testosterone (p\u3c0.001) equivalent to a 48.6% rise, after one hour of tree chopping. Age had no effect on baseline (p=0.656) or change in testosterone (p=0.530); self-reported illness did not modify testosterone change (p=0.488). A comparison of these results to the relative change in testosterone during a competitive soccer tournament in the same population reveals larger relative changes in testosterone following resource production (tree chopping), compared to competition (soccer). These findings highlight the importance of moving beyond a unidimensional focus on changes in testosterone and male-male aggression to investigate the importance of testosterone-behavior interactions across additional male fitness-related activities. Acutely increased testosterone during muscularly intensive horticultural food production may facilitate male productivity and provisioning

    N=1 Supergravity Chaotic Inflation in the Braneworld Scenario

    Full text link
    We study a N=1 Supergravity chaotic inflationary model, in the context of the braneworld scenario. It is shown that successful inflation and reheating consistent with phenomenological constraints can be achieved via the new terms in the Friedmann equation arising from brane physics. Interestingly, the model satisfies observational bounds with sub-Planckian field values, implying that chaotic inflation on the brane is free from the well known difficulties associated with the presence of higher order non-renormalizable terms in the superpotential. A bound on the mass scale of the fifth dimension, M_5 \gsim 1.3 \times 10^{-6} M_P, is obtained from the requirement that the reheating temperature be higher than the temperature of the electroweak phase transition.Comment: 5 pages, 1 Table, Revtex

    Gravitational Microlensing Evidence for a Planet Orbiting a Binary Star System

    Get PDF
    The study of extra-solar planetary systems has emerged as a new discipline of observational astronomy in the past few years with the discovery of a number of extra-solar planets. The properties of most of these extra-solar planets were not anticipated by theoretical work on the formation of planetary systems. Here we report observations and light curve modeling of gravitational microlensing event MACHO-97-BLG-41, which indicates that the lens system consists of a planet orbiting a binary star system. According to this model, the mass ratio of the binary star system is 3.8:1 and the stars are most likely to be a late K dwarf and an M dwarf with a separation of about 1.8 AU. A planet of about 3 Jupiter masses orbits this system at a distance of about 7 AU. If our interpretation of this light curve is correct, it represents the first discovery of a planet orbiting a binary star system and the first detection of a Jovian planet via the gravitational microlensing technique. It suggests that giant planets may be common in short period binary star systems.Comment: 11 pages, with 1 color and 2 b/w Figures included (published version

    Bianchi I Quantum cosmology in the Bergmann-Wagoner theory

    Get PDF
    The Wheeler-DeWitt equation is considered in the context of generalized scalar-tensor theories of gravitation for Bianchi type I cosmology. Exact solutions are found for two selfinteracting potentials and arbitary coupling function. The WKB wavefunctions are obtained and a family of solutions satisfying the Hawking-Page regularity conditions of wormholes are found.Comment: 12 pages, Latex fil

    The role of chaotic resonances in the solar system

    Get PDF
    Our understanding of the Solar System has been revolutionized over the past decade by the finding that the orbits of the planets are inherently chaotic. In extreme cases, chaotic motions can change the relative positions of the planets around stars, and even eject a planet from a system. Moreover, the spin axis of a planet-Earth's spin axis regulates our seasons-may evolve chaotically, with adverse effects on the climates of otherwise biologically interesting planets. Some of the recently discovered extrasolar planetary systems contain multiple planets, and it is likely that some of these are chaotic as well.Comment: 28 pages, 9 figure

    Observations of Low Frequency Solar Radio Bursts from the Rosse Solar-Terrestrial Observatory

    Full text link
    The Rosse Solar-Terrestrial Observatory (RSTO; www.rosseobservatory.ie) was established at Birr Castle, Co. Offaly, Ireland (53 05'38.9", 7 55'12.7") in 2010 to study solar radio bursts and the response of the Earth's ionosphere and geomagnetic field. To date, three Compound Astronomical Low-cost Low-frequency Instrument for Spectroscopy and Transportable Observatory (CALLISTO) spectrometers have been installed, with the capability of observing in the frequency range 10-870 MHz. The receivers are fed simultaneously by biconical and log-periodic antennas. Nominally, frequency spectra in the range 10-400 MHz are obtained with 4 sweeps per second over 600 channels. Here, we describe the RSTO solar radio spectrometer set-up, and present dynamic spectra of a sample of Type II, III and IV radio bursts. In particular, we describe fine-scale structure observed in Type II bursts, including band splitting and rapidly varying herringbone features

    Cosmology From Random Multifield Potentials

    Full text link
    We consider the statistical properties of vacua and inflationary trajectories associated with a random multifield potential. Our underlying motivation is the string landscape, but our calculations apply to general potentials. Using random matrix theory, we analyze the Hessian matrices associated with the extrema of this potential. These potentials generically have a vast number of extrema. If the cross-couplings (off-diagonal terms) are of the same order as the self-couplings (diagonal terms) we show that essentially all extrema are saddles, and the number of minima is effectively zero. Avoiding this requires the same separation of scales needed to ensure that Newton's constant is stable against radiative corrections in a string landscape. Using the central limit theorem we find that even if the number of extrema is enormous, the typical distance between extrema is still substantial -- with challenging implications for inflationary models that depend on the existence of a complicated path inside the landscape.Comment: revtex, 3 figures, 10 pages v2 refs adde

    The thermal emission of the young and massive planet CoRoT-2b at 4.5 and 8 microns

    Get PDF
    We report measurements of the thermal emission of the young and massive planet CoRoT-2b at 4.5 and 8 microns with the Spitzer Infrared Array Camera (IRAC). Our measured occultation depths are 0.510 +- 0.042 % and 0.41 +- 0.11 % at 4.5 and 8 microns, respectively. In addition to the CoRoT optical measurements, these planet/star flux ratios indicate a poor heat distribution to the night side of the planet and are in better agreement with an atmosphere free of temperature inversion layer. Still, the presence of such an inversion is not definitely ruled out by the observations and a larger wavelength coverage is required to remove the current ambiguity. Our global analysis of CoRoT, Spitzer and ground-based data confirms the large mass and size of the planet with slightly revised values (Mp = 3.47 +- 0.22 Mjup, Rp = 1.466 +- 0.044 Rjup). We find a small but significant offset in the timing of the occultation when compared to a purely circular orbital solution, leading to e cos(omega) = -0.00291 +- 0.00063 where e is the orbital eccentricity and omega is the argument of periastron. Constraining the age of the system to be at most of a few hundreds of Myr and assuming that the non-zero orbital eccentricity is not due to a third undetected body, we model the coupled orbital-tidal evolution of the system with various tidal Q values, core sizes and initial orbital parameters. For log(Q_s') = 5 - 6, our modelling is able to explain the large radius of CoRoT-2b if log(Q_p') <= 5.5 through a transient tidal circularization and corresponding planet tidal heating event. Under this model, the planet will reach its Roche limit within 20 Myr at most.Comment: 13 pages, 2 tables, 11 figures. Accepted for publication in Astronomy and Astrophysic

    Is CP Violation Observable in Long Baseline Neutrino Oscillation Experiments ?

    Get PDF
    We have studied CP violation originated by the phase of the neutrino mixing matrix in the long baseline neutrino oscillation experiments. The direct measurements of CP violation is the difference of the transition probabilities between CP-conjugate channels. In those experiments, the CP violating effect is not suppressed if the highest neutrino mass scale is taken to be 1\sim 5 \eV, which is appropriate for the cosmological hot dark matter. Assuming the hierarchy for the neutrino masses, the upper bounds of CP violation have been caluculated for three cases, in which mixings are constrained by the recent short baseline ones. The calculated upper bounds are larger than 10210^{-2}, which will be observable in the long baseline accelerator experiments. The matter effect, which is not CP invariant, has been also estimated in those experiments.Comment: 28 pages, LaTex file, 6 figures included using epsfig Matter effect is estimated(Figs.3(a) (b)). Physical parameters are change
    corecore