We have studied CP violation originated by the phase of the neutrino mixing
matrix in the long baseline neutrino oscillation experiments. The direct
measurements of CP violation is the difference of the transition probabilities
between CP-conjugate channels. In those experiments, the CP violating effect is
not suppressed if the highest neutrino mass scale is taken to be 1\sim 5 \eV,
which is appropriate for the cosmological hot dark matter. Assuming the
hierarchy for the neutrino masses, the upper bounds of CP violation have been
caluculated for three cases, in which mixings are constrained by the recent
short baseline ones. The calculated upper bounds are larger than 10−2,
which will be observable in the long baseline accelerator experiments. The
matter effect, which is not CP invariant, has been also estimated in those
experiments.Comment: 28 pages, LaTex file, 6 figures included using epsfig Matter effect
is estimated(Figs.3(a) (b)). Physical parameters are change