50 research outputs found

    Dust Reverberation Mapping in Distant Quasars from Optical and Mid-Infrared Imaging Surveys

    Full text link
    The size of the dust torus in Active Galactic Nuclei (AGN) and their high-luminosity counterparts, quasars, can be inferred from the time delay between UV/optical accretion disk continuum variability and the response in the mid-infrared (MIR) torus emission. This dust reverberation mapping (RM) technique has been successfully applied to 70\sim 70 z0.3z\lesssim 0.3 AGN and quasars. Here we present first results of our dust RM program for distant quasars covered in the SDSS Stripe 82 region combining 20\sim 20-yr ground-based optical light curves with 10-yr MIR light curves from the WISE satellite. We measure a high-fidelity lag between W1-band (3.4 μ\mum) and gg band for 587 quasars over 0.3z20.3\lesssim z\lesssim 2 (\left\sim 0.8) and two orders of magnitude in quasar luminosity. They tightly follow (intrinsic scatter 0.17\sim 0.17 dex in lag) the IR lag-luminosity relation observed for z<0.3z<0.3 AGN, revealing a remarkable size-luminosity relation for the dust torus over more than four decades in AGN luminosity, with little dependence on additional quasar properties such as Eddington ratio and variability amplitude. This study motivates further investigations in the utility of dust RM for cosmology, and strongly endorses a compelling science case for the combined 10-yr Vera C. Rubin Observatory Legacy Survey of Space and Time (optical) and 5-yr Nancy Grace Roman Space Telescope 2μ\mum light curves in a deep survey for low-redshift AGN dust RM with much lower luminosities and shorter, measurable IR lags. The compiled optical and MIR light curves for 7,384 quasars in our parent sample are made public with this work.Comment: Accepted for publication in Ap

    A catalogue of structural and morphological measurements for DES Y1

    Get PDF
    We present a structural and morphological catalogue for 45 million objects selected from the first year data of the Dark Energy Survey (DES). Single Sersic fits and non-parametric ´ measurements are produced for g, r, and i filters. The parameters from the best-fitting Sersic ´ model (total magnitude, half-light radius, Sersic index, axis ratio, and position angle) are mea- ´ sured with GALFIT; the non-parametric coefficients (concentration, asymmetry, clumpiness, Gini, M20) are provided using the Zurich Estimator of Structural Types (ZEST+). To study the statistical uncertainties, we consider a sample of state-of-the-art image simulations with a realistic distribution in the input parameter space and then process and analyse them as we do with real data: this enables us to quantify the observational biases due to PSF blurring and magnitude effects and correct the measurements as a function of magnitude, galaxy size, Sersic ´ index (concentration for the analysis of the non-parametric measurements) and ellipticity. We present the largest structural catalogue to date: we find that accurate and complete measurements for all the structural parameters are typically obtained for galaxies with SEXTRACTOR MAG AUTO I ≤ 21. Indeed, the parameters in the filters i and r can be overall well recovered up to MAG AUTO ≤ 21.5, corresponding to a fitting completeness of ∼90 per cent below this threshold, for a total of 25 million galaxies. The combination of parametric and non-parametric structural measurements makes this catalogue an important instrument to explore and understand how galaxies form and evolve. The catalogue described in this paper will be publicly released alongside the DES collaboration Y1 cosmology data products at the following URL: https://des.ncsa.illinois.edu/releases

    Constraints on dark matter to dark radiation conversion in the late universe with DES-Y1 and external data

    Get PDF
    84siWe study a class of decaying dark matter models as a possible resolution to the observed discrepancies between early- and late-time probes of the universe. This class of models, dubbed DDM, characterizes the evolution of comoving dark matter density with two extra parameters. We investigate how DDM affects key cosmological observables such as the CMB temperature and matter power spectra. Combining 3x2pt data from Year 1 of the Dark Energy Survey,Planck-2018 CMB temperature and polarization data, Supernova (SN) Type Ia data from Pantheon, and BAO data from BOSS DR12, MGS and 6dFGS, we place new constraints on the amount of dark matter that has decayed and the rate with which it converts to dark radiation. The fraction of the decayed dark matter in units of the current amount of dark matter, zetazeta, is constrained at 68% confidence level to be <0.32 for DES-Y1 3x2pt data, <0.030 for CMB+SN+BAO data, and <0.037 for the combined dataset. The probability that the DES and CMB+SN+BAO datasets are concordant increases from 4% for the LambdaLambdaCDM model to 8% (less tension) for DDM. Moreover, tension in S8=sigma8sqrtOmegam/0.3S_8=sigma_8sqrt{Omega_m/0.3} between DES-Y1 3x2pt and CMB+SN+BAO is reduced from 2.3sigmasigma to 1.9sigmasigma. We find no reduction in the Hubble tension when the combined data is compared to distance-ladder measurements in the DDM model. The maximum-posterior goodness-of-fit statistics of DDM and LambdaLambdaCDM are comparable, indicating no preference for the DDM cosmology over LambdaLambdaCDM....partially_openopenChen, Angela; Huterer, Dragan; Lee, Sujeong; Ferté, Agnès; Weaverdyck, Noah; Alonso Alves, Otavio; Leonard, C. Danielle; MacCrann, Niall; Raveri, Marco; Porredon, Anna; Di Valentino, Eleonora; Muir, Jessica; Lemos, Pablo; Liddle, Andrew; Blazek, Jonathan; Campos, Andresa; Cawthon, Ross; Choi, Ami; Dodelson, Scott; Elvin-Poole, Jack; Gruen, Daniel; Ross, Ashley; Secco, Lucas F.; Sevilla, Ignacio; Sheldon, Erin; Troxel, Michael A.; Zuntz, Joe; Abbott, Tim; Aguena, Michel; Allam, Sahar; Annis, James; Avila, Santiago; Bertin, Emmanuel; Bhargava, Sunayana; Bridle, Sarah; Brooks, David; Carnero Rosell, Aurelio; Carrasco Kind, Matias; Carretero, Jorge; Costanzi, Matteo; Crocce, Martin; da Costa, Luiz; Elidaiana da Silva Pereira, Maria; Davis, Tamara; Doel, Peter; Eifler, Tim; Ferrero, Ismael; Fosalba, Pablo; Frieman, Josh; Garcia-Bellido, Juan; Gaztanaga, Enrique; Gerdes, David; Gruendl, Robert; Gschwend, Julia; Gutierrez, Gaston; Hinton, Samuel; Hollowood, Devon L.; Honscheid, Klaus; Hoyle, Ben; James, David; Jarvis, Mike; Kuehn, Kyler; Lahav, Ofer; Maia, Marcio; Marshall, Jennifer; Menanteau, Felipe; Miquel, Ramon; Morgan, Robert; Palmese, Antonella; Paz-Chinchon, Francisco; Plazas Malagón, Andrés; Roodman, Aaron; Sanchez, Eusebio; Scarpine, Vic; Schubnell, Michael; Serrano, Santiago; Smith, Mathew; Suchyta, Eric; Tarle, Gregory; Thomas, Daniel; To, Chun-Hao; Varga, Tamas Norbert; Weller, Jochen; Wilkinson, ReeseChen, Angela; Huterer, Dragan; Lee, Sujeong; Ferté, Agnès; Weaverdyck, Noah; Alonso Alves, Otavio; Leonard, C. Danielle; Maccrann, Niall; Raveri, Marco; Porredon, Anna; Di Valentino, Eleonora; Muir, Jessica; Lemos, Pablo; Liddle, Andrew; Blazek, Jonathan; Campos, Andresa; Cawthon, Ross; Choi, Ami; Dodelson, Scott; Elvin-Poole, Jack; Gruen, Daniel; Ross, Ashley; Secco, Lucas F.; Sevilla, Ignacio; Sheldon, Erin; Troxel, Michael A.; Zuntz, Joe; Abbott, Tim; Aguena, Michel; Allam, Sahar; Annis, James; Avila, Santiago; Bertin, Emmanuel; Bhargava, Sunayana; Bridle, Sarah; Brooks, David; Carnero Rosell, Aurelio; Carrasco Kind, Matias; Carretero, Jorge; Costanzi, Matteo; Crocce, Martin; da Costa, Luiz; Elidaiana da Silva Pereira, Maria; Davis, Tamara; Doel, Peter; Eifler, Tim; Ferrero, Ismael; Fosalba, Pablo; Frieman, Josh; Garcia-Bellido, Juan; Gaztanaga, Enrique; Gerdes, David; Gruendl, Robert; Gschwend, Julia; Gutierrez, Gaston; Hinton, Samuel; Hollowood, Devon L.; Honscheid, Klaus; Hoyle, Ben; James, David; Jarvis, Mike; Kuehn, Kyler; Lahav, Ofer; Maia, Marcio; Marshall, Jennifer; Menanteau, Felipe; Miquel, Ramon; Morgan, Robert; Palmese, Antonella; Paz-Chinchon, Francisco; Plazas Malagón, Andrés; Roodman, Aaron; Sanchez, Eusebio; Scarpine, Vic; Schubnell, Michael; Serrano, Santiago; Smith, Mathew; Suchyta, Eric; Tarle, Gregory; Thomas, Daniel; Chun-Hao, To; Varga, Tamas Norbert; Weller, Jochen; Wilkinson, Rees

    The effect of environment on type Ia supernovae in the dark energy survey three-year cosmological sample

    Get PDF
    Analyses of type Ia supernovae (SNe Ia) have found puzzling correlations between their standardised luminosities and host galaxy properties: SNe Ia in high-mass, passive hosts appear brighter than those in lower-mass, star-forming hosts. We examine the host galaxies of SNe Ia in the Dark Energy Survey three-year spectroscopically-confirmed cosmological sample, obtaining photometry in a series of ‘local’ apertures centred on the SN, and for the global host galaxy. We study the differences in these host galaxy properties, such as stellar mass and rest-frame U − R colours, and their correlations with SN Ia parameters including Hubble residuals. We find all Hubble residual steps to be >3σ in significance, both for splitting at the traditional environmental property sample median and for the step of maximum significance. For stellar mass, we find a maximal local step of 0.098 ± 0.018 mag; ∼0.03 mag greater than the largest global stellar mass step in our sample (0.070 ± 0.017 mag). When splitting at the sample median, differences between local and global U − R steps are small, both ∼0.08 mag, but are more significant than the global stellar mass step (0.057 ± 0.017 mag). We split the data into sub-samples based on SN Ia light curve parameters: stretch (x1) and colour (c), finding that redder objects (c > 0) have larger Hubble residual steps, for both stellar mass and U − R, for both local and global measurements, of ∼0.14 mag. Additionally, the bluer (star-forming) local environments host a more homogeneous SN Ia sample, with local U − R r.m.s. scatter as low as 0.084 ± 0.017 mag for blue (c < 0) SNe Ia in locally blue U − R environments

    OzDES reverberation mapping program: lag recovery reliability for 6-yr C IV analysis

    Get PDF
    We present the statistical methods that have been developed to analyse the OzDES reverberation mapping sample. To perform this statistical analysis we have created a suite of customizable simulations that mimic the characteristics of each source in the OzDES sample. These characteristics include: the variability in the photometric and spectroscopic light curves, the measurement uncertainties, and the observational cadence. By simulating the sources in the OzDES sample that contain the C iv emission line, we developed a set of criteria that rank the reliability of a recovered time-lag depending on the agreement between different recovery methods, the magnitude of the uncertainties, and the rate at which false positives were found in the simulations. These criteria were applied to simulated light curves and these results used to estimate the quality of the resulting Radius-Luminosity relation. We grade the results using three quality levels (gold, silver, and bronze). The input slope of the R-L relation was recovered within 1σ for each of the three quality samples, with the gold standard having the lowest dispersion with a recovered a R-L relation slope of 0.454 ± 0.016 with an input slope of 0.47. Future work will apply these methods to the entire OzDES sample of 771 AGN

    Supernova siblings: Assessing the consistency of properties of type Ia supernovae that share the same parent galaxies

    No full text
    DES Collaboration: et al. arXiv:2002.00974v2While many studies have shown a correlation between properties of the light curves of SNe Ia and properties of their host galaxies, it remains unclear what is driving these correlations. We introduce a new direct method to study these correlations by analyzing "parent" galaxies that host multiple SNe Ia "siblings." Here, we search the Dark Energy Survey SN sample, one of the largest samples of discovered SNe, and find eight galaxies that hosted two likely SNe Ia. Comparing the light-curve properties of these SNe and recovered distances from the light curves, we find no better agreement between properties of SNe in the same galaxy as any random pair of galaxies, with the exception of the SN light-curve stretch. We show at 2.8σ significance that at least one-half of the intrinsic scatter of SNe Ia distance modulus residuals is not from common host properties. We also discuss the robustness with which we could make this evaluation with LSST, which will find 100× more pairs of galaxies, and pave a new line of study on the consistency of SNe Ia in the same parent galaxies. Finally, we argue that it is unlikely that some of these SNe are actually single, lensed SN with multiple images.D.S. is supported by DOE grant DE-SC0010007, the David and Lucile Packard Foundation. D.S. and R.K. are supported in part by NASA under Contract No. NNG17PX03C issued through the WFIRST Science Investigation Teams Programme. D.B. and M.S. were supported by DOE grant DE-FOA0001358 and NSF grant AST-1517742. L.G. was funded by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 839090. This research used resources of the National Energy Research Scientific Computing Center (NERSC), a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. We are grateful for the support of the University of Chicago Research Computing Center for assistance with the calculations carried out in this work. R.F. is supported in part by NSF grants AST-1518052 and AST1815935, the Gordon & Betty Moore Foundation, the HeisingSimons Foundation, and by fellowships from the David and Lucile Packard Foundation, as well as the NASA contract above. Funding for the DES Projects has been provided by the U.S. Department of Energy, the U.S. National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, the Center for Cosmology and Astro-Particle Physics at the Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Científico e Tecnológico and the Ministério da Ciência, Tecnologia e Inovação, the Deutsche Forschungsgemeinschaft and the Collaborating Institutions in the Dark Energy Survey. The Collaborating Institutions are Argonne National Laboratory, the University of California at Santa Cruz, the University of Cambridge, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas-Madrid, the University of Chicago, University College London, the DES-Brazil Consortium, the University of Edinburgh, the Eidgenössische Technische Hochschule (ETH) Zürich, Fermi National Accelerator Laboratory, the University of Illinois at UrbanaChampaign, the Institut de Ciències de l’Espai (IEEC/CSIC), the Institut de Física d’Altes Energies, Lawrence Berkeley National Laboratory, the Ludwig-Maximilians Universität München and the associated Excellence Cluster Universe, the University of Michigan, the National Optical Astronomy Observatory, the University of Nottingham, The Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National Accelerator Laboratory, Stanford University, the University of Sussex, Texas A&M University, and the OzDES Membership Consortium. Based in part on observations at Cerro Tololo InterAmerican Observatory, National Optical Astronomy Observatory, which is operated by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation. The DES data management system is supported by the National Science Foundation under grant Nos. AST-1138766 and AST-1536171. The DES participants from Spanish institutions are partially supported by MINECO under grants AYA2015-71825, ESP2015-66861, FPA2015-68048, SEV2016-0588, SEV-2016-0597, and MDM-2015-0509, some of which include ERDF funds from the European Union. IFAE is partially funded by the CERCA program of the Generalitat de Catalunya. Research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Program (FP7/2007-2013) including ERC grant agreements 240672, 291329, and 306478. We acknowledge support from the Australian Research Council Centre of Excellence for All-sky Astrophysics (CAASTRO), through project number CE110001020, and the Brazilian Instituto Nacional de Ciência e Tecnologia (INCT) e-Universe (CNPq grant 465376/2014-2). We acknowledge support from EU/FP7-ERC grant No. 615929. This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.Peer reviewe
    corecore