60 research outputs found

    One week of bed rest leads to substantial muscle atrophy and induces whole-body insulin resistance in the absence of skeletal muscle lipid accumulation

    Get PDF
    Short ( < 10 days) periods of muscle disuse, often necessary for recovery from illness or injury, lead to various negative health consequences. The current study investigated mechanisms underlying disuse-induced insulin resistance, taking into account muscle atrophy. Ten healthy, young males (age: 23 ± 1 years; BMI: 23.0 ± 0.9 kg · m−2) were subjected to 1 week of strict bed rest. Prior to and after bed rest, lean body mass (dual-energy X-ray absorptiometry) and quadriceps cross-sectional area (CSA; computed tomography) were assessed, and peak oxygen uptake (VO2peak) and leg strength were determined. Whole-body insulin sensitivity was measured using a hyperinsulinemic-euglycemic clamp. Additionally, muscle biopsies were collected to assess muscle lipid (fraction) content and various markers of mitochondrial and vascular content. Bed rest resulted in 1.4 ± 0.2 kg lean tissue loss and a 3.2 ± 0.9% decline in quadriceps CSA (both P < 0.01). VO2peak and one-repetition maximum declined by 6.4 ± 2.3 (P < 0.05) and 6.9 ± 1.4% (P < 0.01), respectively. Bed rest induced a 29 ± 5% decrease in whole-body insulin sensitivity (P < 0.01). This was accompanied by a decline in muscle oxidative capacity, without alterations in skeletal muscle lipid content or saturation level, markers of oxidative stress, or capillary density. In conclusion, 1 week of bed rest substantially reduces skeletal muscle mass and lowers whole-body insulin sensitivity, without affecting mechanisms implicated in high-fat diet–induced insulin resistance

    Encephalitis and cytokine storm secondary to respiratory viruses in children: Two case reports

    Get PDF
    Introduction Encephalitis is a syndrome characterized by brain damage secondary to an inflammatory process that is manifested by cognitive impairment and altered cerebral spinal fluid analysis; it may evolve with seizures and coma. Despite viral infections representing the main cause of encephalitis in children, respiratory syncytial virus (RSV) and parainfluenza virus are mostly associated with respiratory presentations. Uncommonly, the inflammatory phenomena from encephalitis secondary to viral agents may present with an exacerbated host response, the so-called cytokine storm. The link between these infectious agents and neurologic syndromes resulting in a cytokine storm is rare, and the underlying pathophysiology is still poorly understood. Case presentation A 5-year-old girl and a 2-year-old boy infected with parainfluenza and RSV, respectively, were identified through nasopharyngeal polymerase chain reaction. They were admitted into the pediatric intensive care unit due to encephalitis and multiple organ dysfunction manifested with seizures and hemodynamic instability. Magnetic resonance imaging findings from the first patient revealed a bilateral hypersignal on fluid-attenuated inversion recovery in the cerebral hemispheres, especially in the posterior parietal and occipital regions. The girl also had elevated IL-6 levels during the acute phase and evolved with a fast recovery of the clinical presentations. The second patient progressed with general systemic complications followed by cerebral edema and death. Conclusion Encephalitis secondary to respiratory viral infection might evolve with cytokine storm and multiorgan inflammatory response in children

    Encephalitis and cytokine storm secondary to respiratory viruses in children: Two case reports

    Get PDF
    IntroductionEncephalitis is a syndrome characterized by brain damage secondary to an inflammatory process that is manifested by cognitive impairment and altered cerebral spinal fluid analysis; it may evolve with seizures and coma. Despite viral infections representing the main cause of encephalitis in children, respiratory syncytial virus (RSV) and parainfluenza virus are mostly associated with respiratory presentations. Uncommonly, the inflammatory phenomena from encephalitis secondary to viral agents may present with an exacerbated host response, the so-called cytokine storm. The link between these infectious agents and neurologic syndromes resulting in a cytokine storm is rare, and the underlying pathophysiology is still poorly understood.Case presentationA 5-year-old girl and a 2-year-old boy infected with parainfluenza and RSV, respectively, were identified through nasopharyngeal polymerase chain reaction. They were admitted into the pediatric intensive care unit due to encephalitis and multiple organ dysfunction manifested with seizures and hemodynamic instability. Magnetic resonance imaging findings from the first patient revealed a bilateral hypersignal on fluid-attenuated inversion recovery in the cerebral hemispheres, especially in the posterior parietal and occipital regions. The girl also had elevated IL-6 levels during the acute phase and evolved with a fast recovery of the clinical presentations. The second patient progressed with general systemic complications followed by cerebral edema and death.ConclusionEncephalitis secondary to respiratory viral infection might evolve with cytokine storm and multiorgan inflammatory response in children

    Variants in the Mannose-binding Lectin Gene MBL2 do not Associate With Sepsis Susceptibility or Survival in a Large European Cohort

    Get PDF
    We use a large cohort of immune competent adults to analyze the influence of MBL2 genetic variants on sepsis susceptibility and survival. We find no significant associations with the 4 main functional single nucleotide polymorphisms in MBL2, or any combination of genotype

    Identifying future models for delivering genetic services: a nominal group study in primary care

    Get PDF
    BACKGROUND: To enable primary care medical practitioners to generate a range of possible service delivery models for genetic counselling services and critically assess their suitability. METHODS: Modified nominal group technique using in primary care professional development workshops. RESULTS: 37 general practitioners in Wales, United Kingdom too part in the nominal group process. The practitioners who attended did not believe current systems were sufficient to meet anticipated demand for genetic services. A wide range of different service models was proposed, although no single option emerged as a clear preference. No argument was put forward for genetic assessment and counselling being central to family practice, neither was there a voice for the view that the family doctor should become skilled at advising patients about predictive genetic testing and be able to counsel patients about the wider implications of genetic testing for patients and their family members, even for areas such as common cancers. Nevertheless, all the preferred models put a high priority on providing the service in the community, and often co-located in primary care, by clinicians who had developed expertise. CONCLUSION: There is a need for a wider debate about how healthcare systems address individual concerns about genetic concerns and risk, especially given the increasing commercial marketing of genetic tests

    Incorporation of Omega-3 Fatty Acids Into Human Skeletal Muscle Sarcolemmal and Mitochondrial Membranes Following 12 Weeks of Fish Oil Supplementation

    Get PDF
    Fish oil (FO) supplementation in humans results in the incorporation of omega-3 fatty acids (FAs) eicosapentaenoic acid (EPA; C20:5) and docosahexaenoic acid (DHA; C20:6) into skeletal muscle membranes. However, despite the importance of membrane composition in structure–function relationships, a paucity of information exists regarding how different muscle membranes/organelles respond to FO supplementation. Therefore, the purpose of the present study was to determine the effects 12 weeks of FO supplementation (3g EPA/2g DHA daily) on the phospholipid composition of sarcolemmal and mitochondrial fractions, as well as whole muscle responses, in healthy young males. FO supplementation increased the total phospholipid content in whole muscle (57%; p &lt; 0.05) and the sarcolemma (38%; p = 0.05), but did not alter the content in mitochondria. The content of omega-3 FAs, EPA and DHA, were increased (+3-fold) in whole muscle, and mitochondrial membranes, and as a result the omega-6/omega-3 ratios were dramatically decreased (-3-fold), while conversely the unsaturation indexes were increased. Intriguingly, before supplementation the unsaturation index (UI) of sarcolemmal membranes was ∼3 times lower (p &lt; 0.001) than either whole muscle or mitochondrial membranes. While supplementation also increased DHA within sarcolemmal membranes, EPA was not altered, and as a result the omega-6/omega-3 ratio and UI of these membranes were not altered. All together, these data revealed that mitochondrial and sarcolemmal membranes display unique phospholipid compositions and responses to FO supplementation

    In Vivo, Fatty Acid Translocase (CD36) Critically Regulates Skeletal Muscle Fuel Selection, Exercise Performance, and Training-induced Adaptation of Fatty Acid Oxidation

    Get PDF
    For ∼40 years it has been widely accepted that (i) the exercise-induced increase in muscle fatty acid oxidation (FAO) is dependent on the increased delivery of circulating fatty acids, and (ii) exercise training-induced FAO up-regulation is largely attributable to muscle mitochondrial biogenesis. These long standing concepts were developed prior to the recent recognition that fatty acid entry into muscle occurs via a regulatable sarcolemmal CD36-mediated mechanism. We examined the role of CD36 in muscle fuel selection under basal conditions, during a metabolic challenge (exercise), and after exercise training. We also investigated whether CD36 overexpression, independent of mitochondrial changes, mimicked exercise training-induced FAO up-regulation. Under basal conditions CD36-KO versus WT mice displayed reduced fatty acid transport (−21%) and oxidation (−25%), intramuscular lipids (less than or equal to −31%), and hepatic glycogen (−20%); but muscle glycogen, VO(2max), and mitochondrial content and enzymes did not differ. In acutely exercised (78% VO(2max)) CD36-KO mice, fatty acid transport (−41%), oxidation (−37%), and exercise duration (−44%) were reduced, whereas muscle and hepatic glycogen depletions were accelerated by 27–55%, revealing 2-fold greater carbohydrate use. Exercise training increased mtDNA and β-hydroxyacyl-CoA dehydrogenase similarly in WT and CD36-KO muscles, but FAO was increased only in WT muscle (+90%). Comparable CD36 increases, induced by exercise training (+44%) or by CD36 overexpression (+41%), increased FAO similarly (84–90%), either when mitochondrial biogenesis and FAO enzymes were up-regulated (exercise training) or when these were unaltered (CD36 overexpression). Thus, sarcolemmal CD36 has a key role in muscle fuel selection, exercise performance, and training-induced muscle FAO adaptation, challenging long held views of mechanisms involved in acute and adaptive regulation of muscle FAO
    • …
    corecore