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Fish oil (FO) supplementation in humans results in the incorporation of omega-3 fatty
acids (FAs) eicosapentaenoic acid (EPA; C20:5) and docosahexaenoic acid (DHA;
C20:6) into skeletal muscle membranes. However, despite the importance of membrane
composition in structure–function relationships, a paucity of information exists regarding
how different muscle membranes/organelles respond to FO supplementation. Therefore,
the purpose of the present study was to determine the effects 12 weeks of
FO supplementation (3g EPA/2g DHA daily) on the phospholipid composition of
sarcolemmal and mitochondrial fractions, as well as whole muscle responses, in
healthy young males. FO supplementation increased the total phospholipid content
in whole muscle (57%; p < 0.05) and the sarcolemma (38%; p = 0.05), but did not
alter the content in mitochondria. The content of omega-3 FAs, EPA and DHA, were
increased (+3-fold) in whole muscle, and mitochondrial membranes, and as a result
the omega-6/omega-3 ratios were dramatically decreased (−3-fold), while conversely
the unsaturation indexes were increased. Intriguingly, before supplementation the
unsaturation index (UI) of sarcolemmal membranes was ∼3 times lower (p < 0.001)
than either whole muscle or mitochondrial membranes. While supplementation also
increased DHA within sarcolemmal membranes, EPA was not altered, and as a result
the omega-6/omega-3 ratio and UI of these membranes were not altered. All together,
these data revealed that mitochondrial and sarcolemmal membranes display unique
phospholipid compositions and responses to FO supplementation.

Keywords: omega-3, fatty acids, membrane, skeletal muscle, mitochondria, sarcolemma

INTRODUCTION

Phospholipids are the major constituents of cell membranes (Singer and Nicolson, 1972), and
their composition determines the structure and function of the cell (McIntosh and Simon,
2006). Changes in membrane composition affect permeability and fluidity of the membrane and
influence interactions between membrane bound lipids and proteins, thereby impacting a myriad
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of physiological processes (Lee, 1998; Sprong et al., 2001;
Andersen and Koeppe, 2007). The omega-3 fatty acids (FAs),
eicosapentaenoic (EPA; C20:5) and docosahexaenoic (DHA;
C20:6) acid, are characterized by their ability to modify the
composition of biological membranes. Incorporation of these
FAs has been demonstrated to modify the activity of enzymes
and proteins involved in the transport of substrates and ions
across membranes (Liu et al., 1994; Hulbert, 2007; Herbst et al.,
2014; Shaikh et al., 2015; Chorner et al., 2016), and to disrupt
the formation of membrane rafts, thereby modulating multiple
cellular and signaling events in different tissues (Wassall and
Stillwell, 2008; Williams et al., 2012).

Skeletal muscle is an essential tissue for the production of
energy and to power contractions that provide the ability
to move. Sarcolemmal and mitochondrial membranes
represent key control points in both carbohydrate and FA
metabolism. Sarcolemmal membranes are predominantly
composed of saturated fatty acids (SFAs) and to a lesser extent
of polyunsaturated fatty acids (PUFAs) (omega-6 > omega-
3 FAs) and monounsaturated fatty acids (MUFAs) (Fiehn
et al., 1971; Liu et al., 1994; Fajardo et al., 2013). Meanwhile
mitochondrial membranes are composed evenly of SFAs and
PUFAs, and the omega-6 FAs are the major PUFA constituent
(Fiehn et al., 1971; Stefanyk et al., 2010; Fajardo et al., 2013;
Herbst et al., 2014). These differences may reflect the diverse
roles that these compartments play in the cell. Furthermore,
there is substantial evidence revealing that EPA and DHA are
significantly incorporated into skeletal muscle membranes
following omega-3 FA supplementation, at the expense of
omega-6 FAs (Liu et al., 1994; Andersson et al., 2002; Haugaard
et al., 2006; Tsalouhidou et al., 2006; Smith G.I. et al., 2011;
Herbst et al., 2014; McGlory et al., 2014; Chorner et al.,
2016). However, most studies examining skeletal muscle
sarcolemmal and mitochondrial membranes were done in rodent
samples. Furthermore, it remains unknown if sarcolemmal and
mitochondrial membranes similarly respond to omega-3 FA
supplementation.

Therefore, the purpose of the present study was to determine
phospholipid composition and the effects of fish oil (FO)
on whole muscle, sarcolemmal and mitochondrial fractions in
skeletal muscle from healthy young males. A portion of the
sarcolemmal and mitochondrial data were published previously
(Gerling et al., 2014; Herbst et al., 2014). We hypothesized that
membrane composition would be different between membrane
fractions, and that after FO supplementation, total phospholipid
content would increase in the sarcolemma and that EPA and
DHA content would be substantially augmented in whole muscle,
sarcolemmal and mitochondrial membranes.

MATERIALS AND METHODS

This study was part of a larger project designed to address
the effects of FO supplementation on whole body and
skeletal muscle metabolism. Western blotting data from giant
sarcolemmal vesicles and a portion of mitochondrial data were
published previously (Gerling et al., 2014; Herbst et al., 2014).

Specifically, the studies reported purity of mitochondria and giant
sarcolemmal vesicle isolation by revealing presence or absence
of known mitochondrial (oxidative phosphorylation proteins,
E1α subunit pyruvate dehydrogenase), plasma membrane
(caveolin-1) and sarcoplasmic reticulum (Ca2+ ATPase) proteins.
In addition, Gerling et al. (2014) reported the effects of
FO supplementation on whole muscle protein content of
fatty acid translocase (FAT/CD36), plasma membrane fatty
acid binding protein (FABPpm), and fatty acid transport
proteins 1 and 4 (FATP1-4); sarcolemmal protein content of
FAT/CD36, FABPpm, and FATP4; and mitochondrial content
of FAT/CD36 and uncoupling protein 3. Lastly, Herbst et al.
(2014) reported the effects of FO supplementation on absolute
phospholipid composition of omega-6 and omega-3 FAs from
isolated mitochondria.

Subjects
Ten healthy, recreationally active males (age = 23.4 ± 1.4 year;
body mass = 79.7± 3.8 kg; height = 180.4± 2.3 cm) volunteered
to participate in the study. Written informed consent was
received from each subject following a detailed explanation of
the experimental protocol and any associated risks. Subjects
were screened to ensure they were in good health, were not
currently taking omega-3 supplements, had no previous history
of omega-3 supplementation, and were not currently or had
previously consumed a diet high in omega-3 FAs. Subjects
were instructed to maintain consistent diet and exercise habits
throughout the study. The study was approved by the University
of Guelph and McMaster University Research Ethics Boards.
All participants gave their informed consent prior to their
inclusion in the study.

Study Design
Two hours prior to arriving at the laboratory, participants
were provided with a standardized meal consisting of a whole-
wheat bagel with cream cheese and 500 ml of water. Subjects
were asked to refrain from any physical activity, alcohol, and
caffeine consumption 24 h prior to receiving muscle biopsies,
and to consume a balanced diet [∼50% of energy (E) from
carbohydrate, ∼30% E from fat, and ∼20% E from protein] the
day before. Diet records were obtained from the day before pre-
supplementation biopsies, and subjects were instructed to follow
the same diet the day before post-supplementation biopsies.
Following pre-supplementation biopsies, subjects consumed 5
capsules of Omega-3 Complete (1,000 mg per capsule, Jamieson
Laboratories Ltd., Windsor, ON, Canada) per day for 12 weeks.
Each capsule provided 400 mg of EPA and 200 mg of DHA
in triglyceride (TG) form, for a total of 2,000 mg/days of
EPA and 1,000 mg/days of DHA. Subjects were instructed
to take 2 capsules in the morning with breakfast and 3
with evening dinner.

To promote supplement compliance, the participants were
only given 2 weeks of capsules at a time. Written and oral
reminders were also provided on a regular basis to ensure diet
and exercise practices were maintained consistent throughout
the study. Skeletal muscle biopsies were taken at baseline and
following the 12-week supplementation period.
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Muscle Biopsies
Two to four resting muscle biopsies (total ∼500 mg) were
obtained under local anesthesia (2% lidocaine without
epinephrine) from the vastus lateralis muscle, using the
percutaneous needle biopsy technique (Bergstrom, 1975). Pre-
and post-supplementation biopsies were obtained from opposite
legs. One muscle aliquot (∼200–250 mg) was used to isolate
the sarcolemmal membrane by preparing giant sarcolemmal
vesicles; a second aliquot (∼200 mg) was used for the isolation of
mitochondria, and a third aliquot (∼100 mg) was immediately
frozen for whole muscle analyses.

Preparation of Giant Sarcolemmal
Vesicles
Giant sarcolemmal vesicles were generated as described
previously (Bonen et al., 2000; Talanian et al., 2010). Briefly, the
tissue was cut into thin layers ∼1-3 mm thick and incubated for
1 h at 34◦C in 140 mM KCl/10 mM MOPS (pH 7.4), 1 mL of
collagenase (type VII, 150 units/ml), and aprotinin (30 µg/mL)
in a shaking water bath. Following incubation, the supernatant
fraction was collected. The remaining tissue was washed with
KCl MOPS and 10 mM EDTA, resulting in a second supernatant
fraction. The two supernatant fractions were pooled, and Percoll
(G.E. Healthcare, Baie d’Urfé, QC, Canada), KCl, and aprotinin
were added to final concentrations of 3.5% (w/v), 20 mM, and
10 µg/mL, respectively. The resulting suspension was placed at
the bottom of a density gradient consisting of a 3 ml middle layer
of 4% Nycodenz (v/v) and a 1 mL upper layer of KCl/MOPS.
The sample was then centrifuged at 60 × g for 45 min at room
temperature. The vesicles were then harvested from the interface
of the upper and middle solutions, diluted in KCl/MOPS, and
re-centrifuged at 12,000 × g for 5 min. The resultant vesicle
pellet was re-suspended in KCl/MOPS and stored at −80◦C
for lipid analyses.

Mitochondrial Isolation
Intact, pooled mitochondria [containing both intermyofibrillar
(IMF) and subsarcolemmal (SS) fractions] were isolated as
described previously (Holloway et al., 2007; Talanian et al.,
2010). Briefly, fresh muscle was homogenized and centrifuged
at 800 g for 10 min to separate SS and IMF fractions. The
IMF mitochondrial fraction was treated with protease (Subtilisin
A; Sigma, St. Louis, MO, United States) for exactly 5 min and
centrifuged to remove the myofibrils. IMF and SS fractions
were recombined, centrifuged twice at 10,000 g for 10 min
and resuspended in 100 µl S&M solution (225 mm mannitol,
75 mm sucrose, 10 mm Tris–HCl, 0.1 mm EDTA; pH 7.4).
Mitochondria were further purified using a percoll gradient and
pooled for analysis.

Lipid Analyses
Briefly, total lipids from the samples (whole muscle,
GSV and isolated mitochondria fractions) were extracted
(Folch et al., 1957), and thin-layer chromatography was
used to separate individual classes of phospholipids
(phosphatidylcholine, PC; phosphatidylethanolamine, PE;

cardiolipin, CL; phosphatidylinositol, PI; phosphatidylserine,
PS; and sphingomyelin, SM). Once isolated, phospholipids
were methylated with 1 M methanolic sodium methoxide
(Fluka) at room temperature for 10 min (Mahadevappa and
Holub, 1987), and the fatty acid composition of each class was
analyzed by gas chromatography (Hewlett-Packard 5890 Series
II system, equipped with a double flame ionization detector and
Agilent CP-Sil 88 capillary column, 100 m, internal diameter of
0.25 mm). Fatty acids were identified by comparison of retention
times with those of a known standard, and absolute amounts of
individual fatty acids were calculated with the aid of the internal
standard, a pentadecanoic acid (Sigma–Aldrich, St. Louis, MO,
United States) added to the samples before the methylation
process by a single point quantification method. Total amounts
of each class of the phospholipids were determined from the
summed amounts of FAs in each phospholipid relative to
protein concentration (nmol/mg protein) for sarcolemmal
and mitochondrial preparations. Whole muscle amounts of
phospholipid classes were determined relative to dry weight
(nmol/g of dry mass). All fractions were also expressed as
a percentage (%) of total FAs. The degree of unsaturation
(unsaturation index, UI) of each muscle fraction was calculated
as 6mi × ni, where mi is the mole percentage and ni is the
number of carbon–carbon double bonds of the FA.

Statistical Analyses
All data are presented as means ± SEM and were checked for
normality before any analyses. If data were normally distributed
a paired two-tailed t-test was performed on each membrane
fraction to determine the effects of FO supplementation
on phospholipid composition. When data was not normally
distributed a Wilcoxon matched-pair signed rank test was
performed. A two-way ANOVA was used to compare the
effects of FO supplementation on unsaturation index (UI)
and omega-6/omega-3 ratio. When significance was found,
Fisher’s LSD post hoc tests were used. Statistical significance was
accepted at p < 0.05.

RESULTS

Phospholipid Head Groups
The FO intervention increased the total phospholipid content of
whole muscle membranes (56%) and sarcolemmal membranes
(38%) (p < 0.05), while the mitochondrial membranes remained
unaltered (Figure 1). The changes in total phospholipid head
groups were due to increased abundance of all phospholipid
head groups in whole muscle, and to increases in PI and CL in
sarcolemma (Table 1).

When expressed as a percent of total FAs, phospholipid
species from whole muscle membranes from most prevalent to
least were PC (56%), PE (20%), CL (8%), PI (8%), PS (4%),
and SM (4%) (Table 1). After FO supplementation, there was
a decrease in percent fraction of SM, PC, PS and PI, and
an increase in CL (Table 1). In mitochondria the distribution
of phospholipids from highest to lowest were PC (38%), PE
(29%), CL (16%), PI (8%), PS (6%), and SM (3%). There was

Frontiers in Physiology | www.frontiersin.org 3 March 2019 | Volume 10 | Article 348

https://www.frontiersin.org/journals/physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-10-00348 March 28, 2019 Time: 17:49 # 4

Gerling et al. Omega-3 Supplementation and Muscle Membranes

FIGURE 1 | Total phospholipid species from whole muscle (left y-axis, nmol/g
dry mass) and mitochondria and sarcolemma (right y-axis, nmol/mg protein)
before (Pre) and after (Post) 12 weeks of fish oil supplementation. Values
represent means ± SEM. ∗Significantly different from Pre.

no effect of FO supplementation in phospholipid head group
distribution of mitochondria, except for SM, which was decreased
(p < 0.05; Table 1). Lipid head groups from sarcolemmal
membranes were more uniform, as PS, PE, PC and PI had similar
percent fractions (18–25%), followed by SM (7%) and CL (6%).
After FO supplementation, there was a decrease in the percent
fraction of SM, and an increase in the distribution of PI and CL
(p < 0.05; Table 1).

Absolute and Relative Content of
Fatty Acids
Most studies analyzing skeletal muscle membrane composition
have expressed individual fatty acyl tails as a % of total FAs
(relative) opposed to a concentration basis (absolute). However,

there is evidence that membrane composition differs when
lipids are expressed in relative or absolute terms (Schwertner
and Mosser, 1993). Therefore, we sought to analyze individual
FAs in both absolute and relative terms. Phospholipids from
whole muscle membranes were predominantly composed of
omega-6 FAs and SFA, followed by MUFA and omega-
3 FAs (Table 2). After FO supplementation, there was an
increase in absolute abundance of SFA, MUFA and omega-
3 FAs. The increases in omega-3 FAs were attributed to
elevations in EPA and DHA (Figure 2). When expressed as
a percent of total FAs, SFA and omega-6 FAs were decreased
after supplementation, while omega-3 FAs remained elevated.
The relative changes in omega-6 and omega-3 FAs were
attributed to linoleic acid (LA), and EPA and DHA, respectively
(Figure 2B and Table 2).

Similar to whole muscle, mitochondrial membranes were
mostly composed of SFA and omega-6 FAs, and to a
lesser extent of MUFA and omega-3 FAs (Table 2). After
the FO intervention, there was an absolute increase in
total content of omega-3 FAs (EPA and DHA) alongside
a decrease in SFA and MUFAs (Figure 2A and Table 2).
When expressed in relative terms, EPA and DHA remained
elevated, while omega-6 FAs were decreased, mainly due
to a reduction in LA. Interestingly, FAs in PI and CL
were resistant to change, as only PI increased. Therefore,
alterations in the content of omega-3 fatty acyl tails from
mitochondrial membranes were attributed to PC, PS, and PE
(Supplementary Tables).

Sarcolemmal membranes were primarily composed of SFA
followed by omega-6 FAs, MUFA and omega-3 FAs (Table 2).
After FO treatment, the absolute contents of SFA, EPA, DHA
and total omega-3 FAs were increased (p < 0.05). However, when

TABLE 1 | Total content and percent (%) distribution of phospholipid species from whole muscle, mitochondrial and sarcolemmal membrane fractions before (Pre) and
after (Post) 12 weeks of fish oil supplementation.

Whole muscle nmol/g dry mass Mitochondria nmol/mg protein Sarcolemma nmol/mg protein

Pre Post Pre Post Pre Post

SM 1934 ± 97 2544 ± 254∗ 22 ± 2 13 ± 1∗ 45 ± 9 33 ± 3

PC 32014 ± 2104 45824 ± 5837∗ 242 ± 16 243 ± 8 110 ± 16 121 ± 16

PS 2383 ± 136 3210 ± 282∗ 33 ± 6 34 ± 5 139 ± 27 191 ± 36

PI 4738 ± 343 6567 ± 710 50 ± 4 49 ± 3 88 ± 18 172 ± 34∗

PE 11619 ± 705 18830 ± 1960∗ 188 ± 19 179 ± 16 159 ± 33 207 ± 31

CL 5200 ± 1012 14270 ± 3122∗ 102 ± 14 82 ± 6 38 ± 6 69 ± 11∗

Whole muscle (%) Mitochondria (%) Sarcolemma (%)

Pre Post Pre Post Pre Post

SM 3.5 ± 0.2 2.9 ± 0.1∗ 3.6 ± 0.5 2.3 ± 0.2∗ 6.8 ± 1.3 4.1 ± 0.6∗

PC 55.9 ± 1.7 51 ± 1.7∗ 37.9 ± 0.9 40.6 ± 1.1 19.8 ± 3.3 15.1 ± 2.1

PS 4.2 ± 0.2 3.7 ± 0.2∗ 5.6 ± 1.2 5.8 ± 0.9 25.6 ± 4.5 22.5 ± 4.5

PI 8.3 ± 0.4 7.4 ± 0.2∗ 7.9 ± 0.4 8.3 ± 0.7 17.9 ± 2.4 23.2 ± 3.7∗

PE 20.3 ± 0.6 21.4 ± 1 29.2 ± 1.3 29.4 ± 1.7 23.7 ± 4.2 26.6 ± 5.1

CL 7.9 ± 1.6 13.5 ± 2.4∗ 15.8 ± 2.1 13.6 ± 1 6.2 ± 1.2 8.5 ± 1.7∗

Values represent means ± SEM. ∗Significantly different from Pre. SM, Sphingomyelin; PC, phosphatidylcholine; PS, phosphatidylserine; PI, phosphatidylinositol; PE,
phosphatidylethanolamine; CL, cardiolipin.
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TABLE 2 | Total content and percent (%) distribution of fatty acyl tails from whole muscle, mitochondrial and sarcolemmal membrane fractions before (Pre) and after
(Post) 12 weeks of fish oil supplementation.

Whole muscle nmol/g dry mass Mitochondria nmol/mg protein Sarcolemma nmol/mg protein

Pre Post Pre Post Pre Post

SFA 24450 ± 1348 35852 ± 4416∗ 291 ± 11 272 ± 10∗ 395 ± 65 562 ± 65∗

MUFA 4522 ± 337 9033 ± 1576∗ 38 ± 2 34 ± 1∗ 48 ± 9 61 ± 6

n-6 26442 ± 1764 37350 ± 4742 293 ± 31 249 ± 19 67 ± 14 78 ± 9

n-3 1895 ± 117 7424 ± 1007∗ 14 ± 2 45 ± 5∗ 15 ± 3 23 ± 3∗

Whole muscle (%) Mitochondria (%) Sarcolemma (%)

Pre Post Pre Post Pre Post

SFA 42.8 ± 0.9 40.0 ± 1.0∗ 46.6 ± 2.5 45.7 ± 2.1 76.1 ± 2.0 76.9 ± 1.9

MUFA 7.9 ± 0.4 10.1 ± 1.1 6.1 ± 0.4 5.7 ± 0.4 9.0 ± 0.6 8.8 ± 0.8

n-6 46.0 ± 1.1 41.6 ± 0.8∗ 45.1 ± 2.8 41.1 ± 2.6∗ 11.9 ± 1.3 11.0 ± 0.9

n-3 3.3 ± 0.2 8.3 ± 0.6∗ 2.2 ± 0.2 7.5 ± 0.7∗ 3.0 ± 0.4 3.3 ± 0.4

Values represent means ± SEM. ∗Significantly different from Pre. SFA, Saturated fatty acids; MUFA, Monounsaturated fatty acids; n-6, omega-6; n-3, omega-3.

FIGURE 2 | Percent (%) of absolute total fatty acid content (A) and % of pre-intervention relative total fatty acid content (B) from whole muscle, sarcolemma and
mitochondria membrane fractions after 12 week fish oil supplementation. LA, Linoleic acid; AA, arachidonic acid; ALA, alpha-linolenic acid; EPA, eicosapentaenoic
acid; DHA, docosahexaenoic acid. Values represent means ± SEM. ∗Significantly different from pre-supplementation (100%).

expressed in relative terms only DHA was increased (p < 0.05;
Figure 2 and Table 2).

Omega-6/Omega-3 Ratio and
Unsaturation Index
Before supplementation, the ratio of omega-6/omega-3 from
whole muscle was lower than mitochondria (p < 0.001).
Additionally, the omega-6/omega-3 ratio was lower in the
sarcolemma compared to whole muscle and mitochondria
(p < 0.001; Figure 3A). After the supplementation period,
the omega-6/omega-3 ratio in whole muscle and mitochondrial
membrane fractions were decreased (p < 0.001) and similar to the
omega-6/omega-3 ratio of sarcolemma, which was not affected
by supplementation (Figure 3A). The UI from sarcolemma, was
∼3-times lower than whole muscle and mitochondria (p < 0.001;
Figure 3B). After omega-3 supplementation UI was not affected
in sarcolemma; however, UI was increased (14%; p < 0.01) in
whole muscle and mitochondrial membranes (Figure 3B).

DISCUSSION

The main findings of the present study were that: (1) a 12-week
FO supplementation period increased the total phospholipid
content in whole muscle and sarcolemma, but did not affect
the mitochondrial fraction, (2) omega-3 FAs were substantially
increased in whole muscle, mitochondrial and sarcolemmal
membrane fractions, and (3) sarcolemmal membranes had a
lower UI and the FA composition was less responsive to omega-3
supplementation than whole muscle and mitochondria.

Membrane Phospholipid Compositions
in Skeletal Muscle
In the present study, whole muscle and mitochondrial
membranes had a similar composition, as∼85% of phospholipids
were distributed between PC, PE, and CL, and over 80% of
phospholipid fatty acyl tails were composed of SFA and omega-6
FAs. These results support previous findings in mitochondria
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FIGURE 3 | Omega-6/omega-3 ratio (A) and unsaturation index (B) from whole muscle, sarcolemma and mitochondria membrane fractions before (Pre) and after
(Post) 12 week fish oil supplementation. Values represent means ± SEM. ∗Significantly different from Pre. δSignificantly different to sarcolemma.

(Tsalouhidou et al., 2006; Stefanyk et al., 2010; Holloway et al.,
2012) and whole muscle (Andersson et al., 2002; Smith G.I.
et al., 2011; McGlory et al., 2014) from rodent and human
tissue. Meanwhile, sarcolemmal membranes were predominantly
composed of PC (20%), PS (26%), PI (18%), and PE (24%), and
to a lesser extent of CL and SM (<10% each). Approximately
76% of individual phospholipid fatty acyl tails from sarcolemmal
vesicles were comprised of SFAs, followed by omega-6 FAs
(12%), MUFA (9%), and omega-3 FAs (3%). These results are
similar to a recent study that isolated plasma membrane from
rodent tissue by mechanically skinning muscle fibers (Fajardo
et al., 2013). However, there were major differences regarding
content of SM and MUFAs, as they were∼3 times higher in their
study. These differences could be due to the host used (human
vs. rodent), muscle fiber type analyzed (mixed vs. type II), region
of sarcolemma isolated and isolation procedure.

Effect of Omega-3 FAs on Skeletal
Muscle Phospholipids
In the present study, 12 weeks of FO supplementation increased
the total phospholipid content of whole muscle and sarcolemma,
but not mitochondrial membranes. Specifically, within whole
muscle all phospholipid head groups were increased, propelled
by increases in SFA, MUFAs and omega-3 FAs. While in
sarcolemma, PI and CL were increased, driven by increases
in SFA and omega-3 FAs. Although the mechanisms behind
these changes are currently unknown, omega-3 FAs have been
demonstrated to increase expression of several proteins involved
in diverse metabolic processes that have been linked to skeletal
muscle anabolism, inflammation, and carbohydrate and lipid
metabolism (Deckelbaum et al., 2006; Jeromson et al., 2015).
Although speculative, omega-3 FAs may have increased the
expression of proteins involved in phospholipid synthesis,
augmenting the content of whole muscle and sarcolemmal
fractions. While it remains unknown why mitochondrial
membranes were not altered, importantly previous research

has demonstrated that omega-3 supplementation does not
affect mitochondrial content/biogenesis (Herbst et al., 2014;
Matravadia et al., 2014; Johnson et al., 2015), supporting
the current data.

Omega-3 supplementation is well-known to alter the lipid
composition of skeletal muscle membrane fractions (Liu et al.,
1994; Andersson et al., 2002; Haugaard et al., 2006; Tsalouhidou
et al., 2006; Smith G.I. et al., 2011; Herbst et al., 2014; McGlory
et al., 2014; Chorner et al., 2016). In the present study we aimed
to determine if sarcolemmal and mitochondrial membranes
were similarly altered with FO supplementation. While omega-
3 FAs were robustly increased in all three membrane fractions
when expressed in absolute concentrations, when expressed
in relative terms, EPA and DHA remained elevated in whole
muscle and mitochondrial fractions, and only DHA in the
sarcolemmal fraction. While it has been suggested that expressing
phospholipids in absolute terms removes the influence from
other FAs, improving accuracy for interpreting changes in
phospholipid composition (Schwertner and Mosser, 1993), this
approach prevents comparisons between membrane fractions
which are normalized differently (e.g., dry weight vs. mg
protein). Therefore, the relative changes observed strongly
suggest that fatty acid composition of sarcolemmal membranes
is less affected by FO supplementation, an interpretation further
supported by the absence of a change in the UI. In contrast
the omega-6/omega-3 ratio decreased and UI increased with
FO supplementation in the whole muscle and mitochondrial
fractions, similar to previous studies (Andersson et al., 2002;
Dangardt et al., 2012; Chorner et al., 2016). All together these
data suggest that sarcolemmal membranes are more resistant
to change, most probably due to the low omega-6/omega-
3 ratio prior to supplementation. This is further reinforced
as the ratio appeared similar across all membrane fractions
after FO supplementation.

The presence of CL in sarcolemmal vesicles was surprising as
it is believed to be only expressed in mitochondrial membranes
(Post et al., 1995). A potential explanation could be due to
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minor contamination from other membrane fractions, as the
presence of mitochondrial and sarcoplasmic reticulum proteins
using this isolation procedure has been previously shown
(Smith B.K. et al., 2011). In the current study, sarcolemmal
and mitochondrial membrane compositions were different and
responded differently to omega-3 supplementation, suggesting
that the differences between these compartments were not
exclusively a result of contamination from other fractions
and likely resulted in an underestimation of the differences
between compartments. Another potential explanation is that
this preparation may isolate a specific domain of the sarcolemma,
probably caveolae or lipid rafts, were CL may be required
for proper assembly. We and others have observed significant
presence of lipids (SFAs and SM) and proteins (caveolin-1,
FAT/CD36 and glucose transporter 4) known to be expressed
in lipid rafts and caveolae (Ploug et al., 1993; Song et al.,
1996; Koonen et al., 2002; Vistisen et al., 2004; Pike, 2006;
Glatz et al., 2010; Briolay et al., 2013) within the sarcolemmal
preparation. Furthermore, it has been observed that CL can
relocate to the plasma membrane during periods of apoptosis or
mitophagy (Sorice et al., 2004; Schlame and Greenberg, 2017).
In skeletal muscle a significant portion (∼20%) of mitochondria
reside close to the sarcolemma. Therefore, it is possible that
contact sites within sarcolemmal and mitochondrial membranes
instigate transport and relocation of CL to specific domains
in sarcolemma. Clearly research delineating the mechanistic
aspects of CL within sarcolemmal membranes is required to
advance our understanding for the role of lipid species in
metabolic homeostasis.

The biological significance of membrane changes after
omega-3 supplementation is complex and not completely
understood. Analysis of structural and compositional properties
of membranes has shown that these properties can affect
important metabolic and physiological processes such as protein
activity, ion homeostasis, carrier-mediated transport, signal
transduction, and membrane assembly (Lee, 1998; McIntosh and
Simon, 2006; Williams et al., 2012). It is likely that incorporation
of omega-3 FAs into skeletal muscle membranes may result in
changes in localization and/or post-translational modifications
of membrane proteins, altering divergent metabolic processes,
including sarcolemmal substrate transport (Chorner et al.,
2016; Jeromson et al., 2017), mitochondrial function (Herbst
et al., 2014) and protein synthesis (McGlory et al., 2019).
Future research examining the physiological effects of the
omega-based compositional changes in the various cellular
compartments that occur with supplementation in human
skeletal muscle is warranted.

CONCLUSION

In conclusion, this study found that a 12-week FO
supplementation period increased the total phospholipid content
in whole muscle and sarcolemma but did not affect the
mitochondrial fraction. The omega-3 fatty acids, EPA and DHA,
increased in whole muscle, mitochondrial and sarcolemmal
membrane fractions. Sarcolemmal membranes appeared to be
less responsive than whole muscle and mitochondria, likely
due to the low omega-6/omega-3 ratio. These data implicate
the importance of studying individual membranes independent
of whole muscle, as each membrane fraction revealed unique
phospholipid composition, and responded in a different manner
to FO supplementation.
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